A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/Interval.html below:

Interval—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL

Interval[{min,max}]

represents the range of values between min and max.

Interval[{min1,max1},{min2,max2},]

represents the union of the ranges min1 to max1, min2 to max2, .

Details Background & Context Examplesopen allclose all Basic Examples  (2)

Add intervals, getting an interval representing the result:

Indeterminate limits can give intervals:

Scope  (8)

Squaring gives a non-negative interval:

Some functions can be applied to an interval:

Exact inputs yield exact interval results:

Disjoint intervals can be generated:

Exact comparisons can be made with intervals:

Solve an equation involving an interval:

Approximate numbers automatically turn into intervals:

Machine numbers always correspond to a certain interval:

Interval can be used as a geometric region:

Generalizations & Extensions  (1)

Find the interval that the Wolfram Language considers consistent with machine number 0.:

Specifying a different precision gives a different interval:

Applications  (5)

Watch the widening of intervals in a system with sensitive dependence on initial conditions:

With machine-precision evaluation, this gives a definite but incorrect value:

With Interval, the result spans the correct value:

Show how the bounds of an interval vary with a parameter:

Test for points within an Interval:

Apply it to a list of points to test membership:

Construct the Cantor set by starting with a {0,1} interval and remove the middle third of each interval in each step:

Some steps:

Find the length of the region:

Find a formula for the sequence of lengths using FindSequenceFunction:

Properties & Relations  (2)

Use Max and Min to find end points of intervals:

CenteredInterval represents real intervals or complex rectangles:

Convert a bounded Interval to CenteredInterval representation:

Convert it back:

When interval endpoints are not binary rationals, conversion makes the interval larger:

Possible Issues  (1)

Intervals are always assumed independent:

A single real variable over the same range yields an interval with a different lower limit:

Wolfram Research (1996), Interval, Wolfram Language function, https://reference.wolfram.com/language/ref/Interval.html (updated 2014). Text

Wolfram Research (1996), Interval, Wolfram Language function, https://reference.wolfram.com/language/ref/Interval.html (updated 2014).

CMS

Wolfram Language. 1996. "Interval." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2014. https://reference.wolfram.com/language/ref/Interval.html.

APA

Wolfram Language. (1996). Interval. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Interval.html

BibTeX

@misc{reference.wolfram_2025_interval, author="Wolfram Research", title="{Interval}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/Interval.html}", note=[Accessed: 11-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_interval, organization={Wolfram Research}, title={Interval}, year={2014}, url={https://reference.wolfram.com/language/ref/Interval.html}, note=[Accessed: 11-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4