A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/InterpolatingFunction.html below:

InterpolatingFunction—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL

InterpolatingFunction[domain,table]

represents an approximate function whose values are found by interpolation.

Details Examplesopen allclose all Basic Examples  (2)

Make an InterpolatingFunction object that will go through the given points:

Only the domain is shown in standard output format:

Evaluate the function at a point in the domain:

Plot the function over its domain, showing the interpolation points:

Get an InterpolatingFunction object approximating the solution of a differential equation:

Plot the function and its derivative:

Find the indefinite integral of the solution:

Properties & Relations  (1) History

Introduced in 1991 (2.0) | Updated in 1996 (3.0)

Wolfram Research (1991), InterpolatingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/InterpolatingFunction.html (updated 1996). Text

Wolfram Research (1991), InterpolatingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/InterpolatingFunction.html (updated 1996).

CMS

Wolfram Language. 1991. "InterpolatingFunction." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 1996. https://reference.wolfram.com/language/ref/InterpolatingFunction.html.

APA

Wolfram Language. (1991). InterpolatingFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InterpolatingFunction.html

BibTeX

@misc{reference.wolfram_2025_interpolatingfunction, author="Wolfram Research", title="{InterpolatingFunction}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/InterpolatingFunction.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_interpolatingfunction, organization={Wolfram Research}, title={InterpolatingFunction}, year={1996}, url={https://reference.wolfram.com/language/ref/InterpolatingFunction.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4