We deliver solutions for the AI eraâcombining symbolic computation, data-driven insights and deep technology expertise.
FunctionExpand[expr]
tries to expand out special and certain other functions in expr, when possible reducing compound arguments to simpler ones.
Details and Options Examplesopen allclose all Basic Examples (2)Find expansion in terms of simpler functions:
Scope (9)Expansions of elementary functions and their compositions:
Expansions of orthogonal polynomials and related functions:
FunctionExpand reduces compound arguments to simpler ones:
Expansions of elliptic functions:
Expansions of number theoretic functions:
Expansions of unevaluated derivatives:
Expansions of hypergeometric family functions:
Expansion of special functions:
Options (3) Assumptions (3)Some expansions are valid under additional assumptions:
Here n is assumed to be a generic complex number:
FunctionExpand applies transformations valid for generic index ν:
Use Assumptions to get a specific transformation:
Applications (1)Rewrite a solution returned by DSolve:
Properties & Relations (2) Possible Issues (2)FunctionExpand may not always expand expressions involving inexact numbers:
Some transformations used by FunctionExpand are only generically valid:
HistoryIntroduced in 1996 (3.0) | Updated in 1999 (4.0) ▪ 2000 (4.1) ▪ 2002 (4.2) ▪ 2003 (5.0) ▪ 2007 (6.0) ▪ 2008 (7.0)
Wolfram Research (1996), FunctionExpand, Wolfram Language function, https://reference.wolfram.com/language/ref/FunctionExpand.html (updated 2008). TextWolfram Research (1996), FunctionExpand, Wolfram Language function, https://reference.wolfram.com/language/ref/FunctionExpand.html (updated 2008).
CMSWolfram Language. 1996. "FunctionExpand." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2008. https://reference.wolfram.com/language/ref/FunctionExpand.html.
APAWolfram Language. (1996). FunctionExpand. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FunctionExpand.html
BibTeX@misc{reference.wolfram_2025_functionexpand, author="Wolfram Research", title="{FunctionExpand}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FunctionExpand.html}", note=[Accessed: 12-July-2025 ]}
BibLaTeX@online{reference.wolfram_2025_functionexpand, organization={Wolfram Research}, title={FunctionExpand}, year={2008}, url={https://reference.wolfram.com/language/ref/FunctionExpand.html}, note=[Accessed: 12-July-2025 ]}
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4