A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/FindRoot.html below:

Search for a numerical root of a function—Wolfram Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL

FindRoot[f,{x,x0}]

searches for a numerical root of f, starting from the point x=x0.

FindRoot[lhs==rhs,{x,x0}]

searches for a numerical solution to the equation lhs==rhs.

FindRoot[{f1,f2,},{{x,x0},{y,y0},}]

searches for a simultaneous numerical root of all the fi.

FindRoot[{eqn1,eqn2,},{{x,x0},{y,y0},}]

searches for a numerical solution to the simultaneous equations eqni.

Details and Options Examplesopen allclose all Basic Examples  (3)

Find a root of near :

Find a solution to near :

Solve a nonlinear system of equations:

Scope  (4)

Find the solution of a system of two nonlinear equations:

Find a root for a three-component function of three variables:

You can cause the search to use complex values by giving a complex starting value:

When the function is complex for real input, a real starting value may give a complex result:

Generalizations & Extensions  (1)

A variable may be considered as vector valued if specified in the starting value:

Options  (9) AccuracyGoal and PrecisionGoal  (1)

Change tolerances for error estimates:

Relax error tolerances for stopping:

Make estimated relative distance to the root the main criterion for stopping:

DampingFactor  (1)

DampingFactor can be used to help speed convergence to higher-order roots:

Jacobian  (1)

Specify the Jacobian for a "black-box" function:

Without a specified Jacobian, extra evaluations are used to compute finite differences:

If you just know the sparse form, specifying the sparse pattern template saves evaluations:

Inspect the number of Jacobian evaluations needed by different methods:

MaxIterations  (1)

Limit or increase the number of steps taken:

The default number of iterations is 100:

Eventually the algorithm stalls out since this mollifier function has all derivatives 0 at :

Method  (2)

Method options are also explained in Unconstrained Optimization.

Find a root for using different methods:

Define a function that monitors the steps and evaluations used by FindRoot:

The default (Newton's) method:

Brent's root-bracketing method requiring two initial conditions bracketing the root:

Secant method, starting with two initial conditions:

Select the affine covariant Newton method:

StepMonitor  (1)

Monitor when iterative steps have been taken:

Show the steps on a contour plot of :

Show steps (red) and evaluations (green). A step may require several evaluations:

WorkingPrecision  (1)

Find a root using 100-digit precision arithmetic:

Find the root starting with machine precision and adaptively working up to precision 100:

Applications  (3) Computing Inverse Functions  (1)

For an isomorphism , the inverse is the root of :

An approximate inverse for the exponential function:

It is very close to the built-in Log function:

A "black-box" function giving the period of an oscillation:

Plot its inverse:

Solving Boundary Value Problems  (2)

Solve a boundary value problem , using a shooting method:

Use points on either side of the root to give bracketing starting values:

Plot the solution:

Solve the boundary-value problem , with n collocation points:

Consider as a first-order system :

Equations for collocation using the trapezoidal rule:

Use 0 as a starting value:

Find a solution for a particular value of ϵ:

Properties & Relations  (2)

For a polynomial system of equations, NSolve finds all solutions and FindRoot finds one:

FindRoot will find a single solution using an iterative method:

NSolve will find all solutions using a direct method:

For equations involving parameters or exact solutions use Solve, Reduce, or FindInstance:

Solve will return some solutions:

Reduce will enumerate all solutions:

FindInstance will find particular instances:

Possible Issues  (2)

If a function is complex, variables are allowed to have complex values:

If the function is kept real, variables are also taken to be real:

It can be time-consuming to compute functions symbolically:

Restricting the function definition avoids symbolic evaluation:

History

Introduced in 1988 (1.0) | Updated in 2003 (5.0)

Wolfram Research (1988), FindRoot, Wolfram Language function, https://reference.wolfram.com/language/ref/FindRoot.html (updated 2003). Text

Wolfram Research (1988), FindRoot, Wolfram Language function, https://reference.wolfram.com/language/ref/FindRoot.html (updated 2003).

CMS

Wolfram Language. 1988. "FindRoot." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2003. https://reference.wolfram.com/language/ref/FindRoot.html.

APA

Wolfram Language. (1988). FindRoot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindRoot.html

BibTeX

@misc{reference.wolfram_2025_findroot, author="Wolfram Research", title="{FindRoot}", year="2003", howpublished="\url{https://reference.wolfram.com/language/ref/FindRoot.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_findroot, organization={Wolfram Research}, title={FindRoot}, year={2003}, url={https://reference.wolfram.com/language/ref/FindRoot.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4