A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/Expectation.html below:

Expectation—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL

Expectation[expr,xdist]

gives the expectation of expr under the assumption that x follows the probability distribution dist.

Expectation[expr,xdata]

gives the expectation of expr under the assumption that x follows the probability distribution given by data.

Expectation[expr,{x1,x2,}dist]

gives the expectation of expr under the assumption that {x1,x2,} follows the multivariate distribution dist.

Expectation[expr,{x1dist1,x2dist2,}]

gives the expectation of expr under the assumption that x1, x2, are independent and follow the distributions dist1, dist2, .

Expectation[exprpred,]

gives the conditional expectation of expr given pred.

Details and Options Background & Context Examplesopen allclose all Basic Examples  (3)

Compute the expectation of a polynomial expression:

Compute the expectation of an arbitrary expression:

Compute a conditional expectation:

Scope  (31) Basic Uses  (9)

Compute the expectation for an expression in a continuous univariate distribution:

Discrete univariate distribution:

Continuous multivariate distribution:

Discrete multivariate distribution:

Find the expectation of an expression in a distribution specified by a list:

Compute the expectation using independently distributed random variables:

Find the conditional expectation with general nonzero probability conditioning:

Discrete univariate distribution:

Multivariate continuous distribution:

Multivariate discrete distribution:

Compute the conditional expectation with a zero-probability conditioning event:

Apply N[Expectation[]] to invoke NExpectation if symbolic evaluation fails:

With no Assumptions, conditions are generated:

With Assumptions, a result valid under the given assumptions is returned:

Find the expectation of a rational function:

Transcendental function:

Piecewise function:

Complex function:

Compute an expectation for a time slice of a Poisson process:

Quantity Uses  (5)

Find expectations of quantity expressions:

Find expectations specified using QuantityDistribution:

Find conditional expectations:

Calculate expectation with QuantityMagnitude:

Equivalent calculation:

Calculate expectation with distribution given by Quantity data:

Distribution given by QuantityArray:

Parametric Distributions  (4)

Compute expectations for univariate continuous distributions:

Compute expectations for univariate discrete distributions:

Expectations for multivariate continuous distributions:

Expectations for multivariate discrete distributions:

Nonparametric Distributions  (4) Derived Distributions  (9)

Compute the expectation using a TransformedDistribution:

An equivalent way of formulating the same expectation:

Find the expectation using a ProductDistribution:

An equivalent formulation for the same expectation:

Using a component mixture of normal distributions:

Parameter mixture of exponential distributions:

Truncated Dirichlet distribution:

Censored triangular distribution:

Marginal distribution:

An equivalent way of formulating the same expectation:

Copula distribution:

Formula distribution:

Generalizations & Extensions  (2)

Use a pure function to compute an expectation for a list of values:

Compute an expectation for a mixture of continuous and discrete distributions:

Options  (6) Assumptions  (1)

With no Assumptions, conditions are generated:

With Assumptions, a result valid under the given assumptions is returned:

Method  (4)

Compute the expectation of a polynomial function:

Obtain the same result using the moments of the distribution:

The evaluation is slower using the definition of Expectation as an integral:

Compute the expectation of a transcendental function:

Here, the method based on moments fails because the expression is nonpolynomial:

The result can be obtained using the definition of Expectation as a symbolic sum:

Find the expectation of a function in a TukeyLambdaDistribution:

The PDF of this distribution is not available in closed form:

Hence a direct application of the definition fails:

The expectation can be computed using Quantile:

Calculate the expectation of an expression:

This example uses Integrate:

Use Activate to evaluate the result:

TargetUnits  (1)

Create a distribution object with quantity:

Expectation uses the quantity provided in the distribution as default:

Specify the target unit to "Hours":

Applications  (20) Distribution Properties  (5)

Obtain the raw moments of a continuous distribution:

Obtain the mean of a discrete distribution:

Obtain the variance of a truncated distribution:

Construct a mixture density, here a Poissoninverse Gaussian mixture:

Obtain the same result directly using ParameterMixtureDistribution:

Verify Jensen inequality for a concave function and a lognormal distribution:

Finance  (2)

Compute the expected time value of a death benefit of $1 paid at time , where is drawn from a GompertzMakeham distribution:

Find the annual premium, which is usually paid at the beginning of a policy year, that is necessary to make the expected time value of that payment stream for periods (where is drawn from a GompertzMakeham distribution) equal to the net single premium:

The resulting net annual premium:

The fractional change of stock price at time (in years) is assumed lognormally distributed with parameters and :

Compute expected stock price at epoch :

Assuming an investor can invest money in a stock with dividend yield for a year at a continuously compounded yearly rate risk-free, the risk-neutral pricing condition requires:

Solve for parameter :

Consider a call option to buy this stock a year from now, at a fixed price . The value of such an option is:

Similarly, consider a put option to sell this stock a year from now, at a fixed price . The value of such an option is:

The risk-neutral price of the call and put options are determined as the present value of their expected option values:

You can now establish the celebrated Put-Call Parity relationship that :

Assuming rate of 5%, dividend yield of 2%, volatility parameter of 0.087, an initial price of $200 per share of stock, and a strike price of $190 per share, the BlackScholes call and put option prices are:

The above results can be compared favorably with FinancialDerivative:

Risk and Reliability  (2)

Study the tail value at risk (TVaR) for the exponential distribution:

Find the mean time to failure (MTTF) for an exponential life distribution:

Random Experiments  (2)

A random sample of size 10 from a continuous distribution is sorted in ascending order. A new random variate is generated. Find the probability that the 11 sample falls between the fourth and fifth smallest values in the sorted list:

The probability equals and is independent of :

It is also independent of the distribution:

Four six-sided dice are rolled. Find the expectation of the minimum value:

Find the expectation of the maximum value:

Find the expectation of the sum of the three largest values. Using the identity and linearity of Expectation, you get:

Other Applications  (4)

A player bets amount in a casino with no betting limit in a game with a chance of winning . If he loses he doubles the bet, and if he wins he quits, hence the number of games played follows a geometric distribution, with expected number of games played represented as follows:

The cash reserve needed to win the game:

The player always leaves the casino collecting the amount of the initial bet:

The cash reserve needed to execute the above strategy is finite only for strictly favorable games, where :

A drug has proven to be effective in 40% of cases. Find the expected number of successes when applied to 700 cases:

A baseball player is a 0.300 hitter. Find the expected number of hits if the player comes to bat 3 times:

Find the mean if the signal-to-noise ratio has a Weibull distribution:

Properties & Relations  (10)

The expectation of an expression in a continuous distribution is defined by an integral:

The expectation of an expression in a discrete distribution is defined by a sum:

A conditional expectation is defined by a ratio of expectation and probability:

Use NExpectation to find the numerical value of an expectation:

Compute the probability of an event:

Obtain the same result using Expectation:

N[Expectation[]] is equivalent to NExpectation if symbolic evaluation fails:

Use AsymptoticExpectation to find an asymptotic approximation of an expectation:

Obtain the same result using Asymptotic[Expectation[]]:

Mean, Moment, Variance, and other properties are defined as expectations:

Generating functions including MomentGeneratingFunction are defined by an expectation:

For a distribution specified by a list, Expectation is equivalent to using Mean:

Wolfram Research (2010), Expectation, Wolfram Language function, https://reference.wolfram.com/language/ref/Expectation.html (updated 2016). Text

Wolfram Research (2010), Expectation, Wolfram Language function, https://reference.wolfram.com/language/ref/Expectation.html (updated 2016).

CMS

Wolfram Language. 2010. "Expectation." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/Expectation.html.

APA

Wolfram Language. (2010). Expectation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Expectation.html

BibTeX

@misc{reference.wolfram_2025_expectation, author="Wolfram Research", title="{Expectation}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/Expectation.html}", note=[Accessed: 11-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_expectation, organization={Wolfram Research}, title={Expectation}, year={2016}, url={https://reference.wolfram.com/language/ref/Expectation.html}, note=[Accessed: 11-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4