A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/CumulantGeneratingFunction.html below:

CumulantGeneratingFunction—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL CumulantGeneratingFunction

CumulantGeneratingFunction[dist,t]

gives the cumulant-generating function for the distribution dist as a function of the variable t.

CumulantGeneratingFunction[dist,{t1,t2,}]

gives the cumulant-generating function for the multivariate distribution dist as a function of the variables t1, t2, .

Details Examplesopen allclose all Basic Examples  (3)

Compute a cumulant-generating function (cgf) for a continuous univariate distribution:

The cgf for a univariate discrete distribution:

The cgf for a multivariate distribution:

Scope  (5)

Compute the cgf for a formula distribution:

Find the cgf for a function of random variates:

Compute the cgf for data distribution:

Find the cgf for a truncated distribution:

Find the cgf for the slice distribution of a random process:

Applications  (5)

The cumulant-generating function of a difference of two independent random variables is equal to the sum of their cumulant-generating functions with oppositive sign arguments:

Illustrate the central limit theorem:

Find the cumulant-generating function for the standardized random variate:

Find the moment-generating function for the sum of standardized random variates rescaled by :

Find the large limit:

Compare with the moment-generating function of a standard normal distribution:

Find the Esscher premium for insuring against losses following GammaDistribution:

Compare with the definition:

Construct a BernsteinChernoff bound for the survival function :

Large approximation of the bound:

Construct Daniel's saddle point approximation to PDF of VarianceGammaDistribution:

Find the saddle point associated with the argument of probability density function :

Select the solution that is valid for all real , including the origin:

The approximation is constructed using the cumulant-generating function at the saddle point:

Find the normalization constant:

Compare the approximation to the exact density:

Properties & Relations  (3) Wolfram Research (2010), CumulantGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/CumulantGeneratingFunction.html. Text

Wolfram Research (2010), CumulantGeneratingFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/CumulantGeneratingFunction.html.

CMS

Wolfram Language. 2010. "CumulantGeneratingFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CumulantGeneratingFunction.html.

APA

Wolfram Language. (2010). CumulantGeneratingFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CumulantGeneratingFunction.html

BibTeX

@misc{reference.wolfram_2025_cumulantgeneratingfunction, author="Wolfram Research", title="{CumulantGeneratingFunction}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/CumulantGeneratingFunction.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_cumulantgeneratingfunction, organization={Wolfram Research}, title={CumulantGeneratingFunction}, year={2010}, url={https://reference.wolfram.com/language/ref/CumulantGeneratingFunction.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4