A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/CovarianceFunction.html below:

CovarianceFunction—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL

CovarianceFunction[proc,hspec]

represents the covariance function at lags hspec for the random process proc.

CovarianceFunction[proc,s,t]

represents the covariance function at times s and t for the random process proc.

Details Examplesopen allclose all Basic Examples  (4)

Estimate the covariance function at lag 2:

The sample covariance function for a random sample from an autoregressive time series:

Calculate the covariance function for a discrete-time process:

Calculate the covariance function for a continuous-time process:

Scope  (13) Empirical Estimates  (7)

Estimate the covariance function for some data at lag 9:

Obtain empirical estimates of the covariance function up to lag 9:

Compute the covariance function for lags 1 to 9 in steps of 2:

Compute the covariance function for a time series:

The covariance function of a time series for multiple lags is given as a time series:

Estimate the covariance function for an ensemble of paths:

Compare empirical and theoretical covariance functions:

Plot the cross-covariance for vector data:

Random Processes  (6)

The covariance function for a weakly stationary discrete-time process:

The covariance function only depends on the antidiagonal :

The covariance function for a weakly stationary continuous-time process:

The covariance function only depends on the antidiagonal :

The covariance function for a non-weakly stationary discrete-time process:

The covariance function depends on both time arguments:

The covariance function for a non-weakly stationary continuous-time process:

The covariance function depends on both time arguments:

The covariance function for some time-series processes:

Cross-covariance plots for a vector ARProcess:

Applications  (1)

Determine whether the following data is best modeled with an MAProcess or an ARProcess:

It is difficult to determine the underlying process from sample paths:

The covariance function of the data decays slowly:

ARProcess is clearly a better candidate model than MAProcess:

Properties & Relations  (14)

Sample covariance function is a biased estimator for the process covariance function:

Calculate the sample covariance function:

Covariance function for the process:

Plot both functions:

Covariance function for a process is the off-diagonal entry in the Covariance matrix:

Sample covariance function at lag 0 is a variance estimator:

Compare to the estimate using Variance:

The scaling factors are different:

Sample covariance function is related to CorrelationFunction:

Scaled sample correlation function:

Sample covariance function is related to AbsoluteCorrelationFunction:

Use Expectation to calculate the covariance function:

Covariance function for equal times reduces to Variance:

The covariance function is related to the AbsoluteCorrelationFunction :

For , the mean function is :

The covariance function is related to the Covariance:

It is the off-diagonal entry in the covariance matrix:

The covariance function is related to the CorrelationFunction :

For , the standard deviation function is :

Covariance function is invariant for ToInvertibleTimeSeries:

Covariance function is invariant to centralizing:

The data has nonzero mean:

Centralize data:

Compare covariance functions:

PowerSpectralDensity of a time series is a transform of the covariance function:

Use FourierSequenceTransform:

Compare to the power spectrum:

PowerSpectralDensity of data is a transform of the sample covariance function:

Apply ListFourierSequenceTransform:

Compare to SamplePowerSpectralDensity:

Wolfram Research (2012), CovarianceFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/CovarianceFunction.html. Text

Wolfram Research (2012), CovarianceFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/CovarianceFunction.html.

CMS

Wolfram Language. 2012. "CovarianceFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CovarianceFunction.html.

APA

Wolfram Language. (2012). CovarianceFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CovarianceFunction.html

BibTeX

@misc{reference.wolfram_2025_covariancefunction, author="Wolfram Research", title="{CovarianceFunction}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/CovarianceFunction.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_covariancefunction, organization={Wolfram Research}, title={CovarianceFunction}, year={2012}, url={https://reference.wolfram.com/language/ref/CovarianceFunction.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4