We deliver solutions for the AI eraâcombining symbolic computation, data-driven insights and deep technology expertise.
Obtain a cluster hierarchy from a list of colors:
Compare it with the clustering obtained using different cluster dissimilarities:
Show the same results using dendrograms:
Wolfram Research (2016), ClusterDissimilarityFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html. TextWolfram Research (2016), ClusterDissimilarityFunction, Wolfram Language function, https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html.
CMSWolfram Language. 2016. "ClusterDissimilarityFunction." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html.
APAWolfram Language. (2016). ClusterDissimilarityFunction. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html
BibTeX@misc{reference.wolfram_2025_clusterdissimilarityfunction, author="Wolfram Research", title="{ClusterDissimilarityFunction}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html}", note=[Accessed: 12-July-2025 ]}
BibLaTeX@online{reference.wolfram_2025_clusterdissimilarityfunction, organization={Wolfram Research}, title={ClusterDissimilarityFunction}, year={2016}, url={https://reference.wolfram.com/language/ref/ClusterDissimilarityFunction.html}, note=[Accessed: 12-July-2025 ]}
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4