A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/BiweightLocation.html below:

BiweightLocation—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL BiweightLocation

BiweightLocation[list]

gives the value of the biweight location estimator of the elements in list.

BiweightLocation[list,c]

gives the value of the biweight location estimator with scaling parameter c.

Details and Options Examplesopen allclose all Scope  (8)

Same inputs with different precisions:

Biweight location with different scaling parameters:

Biweight location for a matrix gives columnwise estimate:

Biweight location of a large array:

Find a biweight location of a TimeSeries:

The biweight location depends only on the values:

Biweight location works with data involving quantities:

Compute biweight location of dates:

Compute biweight location of times:

List of times with different time zone specifications:

Options  (2) MaxIterations  (1)

The value of BiweightLocation is computed iteratively. Limit the number of iterations attempted in the computation:

Method  (1)

Adjust the starting value in the computation of BiweightLocation:

Limit the number of iterations with a better starting value:

Applications  (3)

Obtain a robust estimate of location when outliers are present:

Extreme values have a large influence on the Mean:

Consider data from a Gaussian mixture distribution:

Estimate the center with Mean:

The sample mean estimator has a large spread for non-Gaussian data. The standard deviation of the estimator is:

Estimate the center with BiweightLocation:

Use bootstrapping to assess the spread of the biweight location estimator:

Simulate a trajectory with heavy-tailed measurement noise:

The underlying signal and simulated path with noise:

Smooth the trajectory using a moving BiweightLocation:

Increasing the block size gives a smoother trajectory:

Properties & Relations  (3)

Compute the biweight location of a sample:

Values outside of the interval have no effect on the statistic. Here is the value of biweight location and is the median absolute deviation with respect to . is a scaling parameter with default value equal to 6:

The shape of the weight function w(x) being used in computing biweight location:

Multiply the smallest and the largest values in the sample by 2 and compute the biweight location again:

For normally distributed samples, BiweightLocation and Mean are nearly the same:

For non-normally distributed samples such as data from CauchyDistribution, BiweightLocation gives a better estimate of the center location than Mean:

BiweightLocation approaches Mean for large values of c:

Neat Examples  (2)

Variation of biweight location around the mean of univariate data depending on the scaling factor c:

Variation of biweight location around the mean of bivariate data depending on the scaling factor c:

Wolfram Research (2017), BiweightLocation, Wolfram Language function, https://reference.wolfram.com/language/ref/BiweightLocation.html (updated 2024). Text

Wolfram Research (2017), BiweightLocation, Wolfram Language function, https://reference.wolfram.com/language/ref/BiweightLocation.html (updated 2024).

CMS

Wolfram Language. 2017. "BiweightLocation." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2024. https://reference.wolfram.com/language/ref/BiweightLocation.html.

APA

Wolfram Language. (2017). BiweightLocation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BiweightLocation.html

BibTeX

@misc{reference.wolfram_2025_biweightlocation, author="Wolfram Research", title="{BiweightLocation}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/BiweightLocation.html}", note=[Accessed: 11-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_biweightlocation, organization={Wolfram Research}, title={BiweightLocation}, year={2024}, url={https://reference.wolfram.com/language/ref/BiweightLocation.html}, note=[Accessed: 11-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4