A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/BetaNegativeBinomialDistribution.html below:

BetaNegativeBinomialDistribution—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL BetaNegativeBinomialDistribution

BetaNegativeBinomialDistribution[α,β,n]

represents a beta negative binomial mixture distribution with beta distribution parameters α and β and n successful trials.

Details Background & Context Examplesopen allclose all Basic Examples  (3)

Probability mass function:

Cumulative distribution function:

Mean and variance:

Scope  (7)

Generate a sample of pseudorandom numbers from a beta negative binomial distribution:

Compare its histogram to the PDF:

Distribution parameters estimation:

Estimate the distribution parameters from sample data:

Compare a density histogram of the sample with the PDF of the estimated distribution:

Skewness:

Kurtosis:

Different moments with closed forms as functions of parameters:

Moment:

CentralMoment:

FactorialMoment:

Closed form for symbolic order:

Cumulant:

Hazard function:

Quantile function:

Applications  (2)

CDF of BetaNegativeBinomialDistribution is an example of a right-continuous function:

The probability of at least 50 failures before 10 successes, assuming a beta distribution on :

Verify by computing the probability for a fixed value of and averaging:

Properties & Relations  (5) Possible Issues  (2)

BetaNegativeBinomialDistribution is not defined when α, β, or n is non-positive:

Substitution of invalid parameters into symbolic outputs gives results that are not meaningful:

Wolfram Research (2007), BetaNegativeBinomialDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/BetaNegativeBinomialDistribution.html. Text

Wolfram Research (2007), BetaNegativeBinomialDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/BetaNegativeBinomialDistribution.html.

CMS

Wolfram Language. 2007. "BetaNegativeBinomialDistribution." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BetaNegativeBinomialDistribution.html.

APA

Wolfram Language. (2007). BetaNegativeBinomialDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BetaNegativeBinomialDistribution.html

BibTeX

@misc{reference.wolfram_2025_betanegativebinomialdistribution, author="Wolfram Research", title="{BetaNegativeBinomialDistribution}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/BetaNegativeBinomialDistribution.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_betanegativebinomialdistribution, organization={Wolfram Research}, title={BetaNegativeBinomialDistribution}, year={2007}, url={https://reference.wolfram.com/language/ref/BetaNegativeBinomialDistribution.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4