A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/ArrayDot.html below:

Generalized Product of Arrays—Wolfram Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL

ArrayDot[a,b,k]

computes the product of arrays a and b obtained by summing up products of terms over the last k dimensions of a and the first k dimensions of b.

ArrayDot[a,b,{{s1,t1},{s2,t2},}]

computes the product of arrays a and b obtained by summing up products of terms over the pairs {si,ti} of dimensions.

Details Examplesopen allclose all Basic Examples  (3)

Compute ArrayDot over two dimensions:

Compute ArrayDot over specified pairs of dimensions:

ArrayDot is used in the array differentiation chain rule:

Scope  (9)

Exact number arrays:

Real machine-number arrays:

Complex arrays:

Symbolic arrays:

Finite field element arrays:

CenteredInterval arrays:

Find random representatives arep and brep of a and b:

Verify that ArrayDot[a,b,3] contains ArrayDot[arep,brep,3]:

ArrayDot of sparse arrays is another sparse array:

Format the result:

Structured arrays:

Efficiently multiply large arrays:

Applications  (1)

Approximate the determinant of a perturbed matrix:

Order zero approximation:

Compare with the exact value:

Order one approximation:

Compare with the exact value:

Order two approximation:

Compare with the exact value:

Properties & Relations  (9)

ArrayDot is linear in each argument:

Dot[a,b] is equal to ArrayDot[a,b,1]:

SymbolicIdentityArray objects are identity elements for ArrayDot:

For a real matrix a, Norm[a,"Frobenius"] is equal to the square root of ArrayDot[a,a,2]:

If c=ArrayDot[a,b, k], then ci1,,ip,j1,,jqai1,,ip,α1,,αkbα1,,αk,j1,,jq:

ArrayDepth[ArrayDot[a,b,k]] is equal to ArrayDepth[a]+ArrayDepth[b]-2k:

ArrayDot can be implemented as a combination of TensorProduct and TensorContract:

ArrayDot can be implemented as a combination of Flatten and Dot:

ArrayDot is used in the array differentiation chain rule:

Wolfram Research (2024), ArrayDot, Wolfram Language function, https://reference.wolfram.com/language/ref/ArrayDot.html. Text

Wolfram Research (2024), ArrayDot, Wolfram Language function, https://reference.wolfram.com/language/ref/ArrayDot.html.

CMS

Wolfram Language. 2024. "ArrayDot." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ArrayDot.html.

APA

Wolfram Language. (2024). ArrayDot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ArrayDot.html

BibTeX

@misc{reference.wolfram_2025_arraydot, author="Wolfram Research", title="{ArrayDot}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/ArrayDot.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_arraydot, organization={Wolfram Research}, title={ArrayDot}, year={2024}, url={https://reference.wolfram.com/language/ref/ArrayDot.html}, note=[Accessed: 12-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4