We deliver solutions for the AI eraâcombining symbolic computation, data-driven insights and deep technology expertise.
ArrayDot[a,b,k]
computes the product of arrays a and b obtained by summing up products of terms over the last k dimensions of a and the first k dimensions of b.
ArrayDot[a,b,{{s1,t1},{s2,t2},…}]
computes the product of arrays a and b obtained by summing up products of terms over the pairs {si,ti} of dimensions.
DetailsCompute ArrayDot over two dimensions:
Compute ArrayDot over specified pairs of dimensions:
ArrayDot is used in the array differentiation chain rule:
Scope (9)CenteredInterval arrays:
Find random representatives arep and brep of a and b:
Verify that ArrayDot[a,b,3] contains ArrayDot[arep,brep,3]:
ArrayDot of sparse arrays is another sparse array:
Efficiently multiply large arrays:
Applications (1)Approximate the determinant of a perturbed matrix:
Properties & Relations (9)ArrayDot is linear in each argument:
Dot[a,b] is equal to ArrayDot[a,b,1]:
SymbolicIdentityArray objects are identity elements for ArrayDot:
For a real matrix a, Norm[a,"Frobenius"] is equal to the square root of ArrayDot[a,a,2]:
If c=ArrayDot[a,b, k], then ci1,…,ip,j1,…,jqai1,…,ip,α1,…,αkbα1,…,αk,j1,…,jq:
ArrayDepth[ArrayDot[a,b,k]] is equal to ArrayDepth[a]+ArrayDepth[b]-2k:
ArrayDot can be implemented as a combination of TensorProduct and TensorContract:
ArrayDot can be implemented as a combination of Flatten and Dot:
ArrayDot is used in the array differentiation chain rule:
Wolfram Research (2024), ArrayDot, Wolfram Language function, https://reference.wolfram.com/language/ref/ArrayDot.html. TextWolfram Research (2024), ArrayDot, Wolfram Language function, https://reference.wolfram.com/language/ref/ArrayDot.html.
CMSWolfram Language. 2024. "ArrayDot." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ArrayDot.html.
APAWolfram Language. (2024). ArrayDot. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ArrayDot.html
BibTeX@misc{reference.wolfram_2025_arraydot, author="Wolfram Research", title="{ArrayDot}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/ArrayDot.html}", note=[Accessed: 12-July-2025 ]}
BibLaTeX@online{reference.wolfram_2025_arraydot, organization={Wolfram Research}, title={ArrayDot}, year={2024}, url={https://reference.wolfram.com/language/ref/ArrayDot.html}, note=[Accessed: 12-July-2025 ]}
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4