We deliver solutions for the AI eraâcombining symbolic computation, data-driven insights and deep technology expertise.
Array[f,n]
generates a list of length n, with elements f[i].
Array[f,n,r]
generates a list using the index origin r.
Array[f,n,{a,b}]
generates a list using n values from a to b.
Array[f,{n1,n2,…}]
generates an n1×n2×… array of nested lists, with elements f[i1,i2,…].
Array[f,{n1,n2,…},{r1,r2,…}]
generates a list using the index origins ri (default 1).
Array[f,{n1,n2,…},{{a1,b1},{a2,b2},…}]
generates a list using ni values from ai to bi.
Array[f,dims,origin,h]
uses head h, rather than List, for each level of the array.
Details Examplesopen allclose all Basic Examples (4)Use index origin 0 instead of 1:
Start with indices 0 and 4 instead of 1:
Use ranges {-1/2,1/2} and {0,1}:
Scope (11) Array Element Specification (5)Create a 3×2 array using an indexed symbol:
Create a 4×4 array using a subscript:
Compare with the built-in function:
Use ## to pick up a sequence of indices:
Index Specification (4)Create a 1D array, starting the indices at 0:
Create a 4×3×2 array with index-dependent origins:
Head Specification (2)Use a non-default head for each level of the array:
Use Plus instead of List to combine elements:
Any symbol with attribute Flat would produce the same shape:
Applications (4)Compare with the built-in LeviCivitaTensor:
Matrix with generic symbolic entries:
Use it to see the effects of some linear algebra functions:
Sample a function uniformly on an interval:
Properties & Relations (4)ConstantArray[c,dims] and Array[c&,dims] are equivalent:
When c is a machine number, ConstantArray is much faster for large arrays:
Array[f,dims] can be generated using Table:
Set up the Table limit specifications:
Use Apply to splice them into a Table command:
The result is identical to the array generated using Array:
SparseArray[{i_,j_}->f[i,j],dims] gives a sparse representation of Array[f,dims]:
The results are Equal:
The objects are not identical, but the represented arrays are:
Compute Array in parallel:
Neat Examples (3) HistoryIntroduced in 1988 (1.0) | Updated in 1999 (4.0) ▪ 2000 (4.1) ▪ 2002 (4.2) ▪ 2012 (9.0)
Wolfram Research (1988), Array, Wolfram Language function, https://reference.wolfram.com/language/ref/Array.html (updated 2012). TextWolfram Research (1988), Array, Wolfram Language function, https://reference.wolfram.com/language/ref/Array.html (updated 2012).
CMSWolfram Language. 1988. "Array." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2012. https://reference.wolfram.com/language/ref/Array.html.
APAWolfram Language. (1988). Array. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Array.html
BibTeX@misc{reference.wolfram_2025_array, author="Wolfram Research", title="{Array}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/Array.html}", note=[Accessed: 12-July-2025 ]}
BibLaTeX@online{reference.wolfram_2025_array, organization={Wolfram Research}, title={Array}, year={2012}, url={https://reference.wolfram.com/language/ref/Array.html}, note=[Accessed: 12-July-2025 ]}
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4