A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://reference.wolfram.com/language/ref/ArcLength.html below:

ArcLength—Wolfram Language Documentation

WOLFRAM Consulting & Solutions

We deliver solutions for the AI era—combining symbolic computation, data-driven insights and deep technology expertise.

WolframConsulting.com

BUILT-IN SYMBOL

ArcLength[reg]

gives the length of the one-dimensional region reg.

ArcLength[{x1,,xn},{t,tmin,tmax}]

gives the length of the parametrized curve whose Cartesian coordinates xi are functions of t.

ArcLength[{x1,,xn},{t,tmin,tmax},chart]

interprets the xi as coordinates in the specified coordinate chart.

Details and Options Examplesopen allclose all Basic Examples  (3)

The length of the line connecting the points , , and :

The length of a circle with radius :

Circumference of a parameterized unit circle:

Length of one revolution of the helix , , expressed in cylindrical coordinates:

Scope  (16) Special Regions  (3)

Line:

Lines can be used in any number of dimensions:

Only a 1D Simplex has meaningful arc length:

It can be embedded in any dimension:

Circle:

Formula Regions  (2)

The arc length of a circle represented as an ImplicitRegion:

An ellipse:

The arc length of a circle represented as a ParametricRegion:

Using a rational parameterization of the circle:

Parametric Formulas  (5)

An infinite curve in polar coordinates with finite length:

The length of the parabola between and :

Arc length specifying metric, coordinate system, and parameters:

Arc length of a curve in higher-dimensional Euclidean space:

The length of a meridian on the two-sphere expressed in stereographic coordinates:

Options  (3) Assumptions  (1)

The length of a cardioid with arbitrary parameter a:

Adding an assumption that a is positive simplifies the answer:

WorkingPrecision  (2)

Compute the ArcLength using machine arithmetic:

In some cases, the exact answer cannot be computed:

Find the ArcLength using 30 digits of precision:

Applications  (8)

The length of a function curve :

Equivalently:

Compute the length of a knot:

Compute the length of Jupiter's orbit in meters:

The length can be computed using the polar representation of an ellipse:

Alternatively, use elliptic coordinates with half focal distance and constant :

Extract lines from a graphic and compute their coordinate length:

Color a Lissajous curve by distance traversed:

Color Viviani's curve on the sphere by the fraction of distance traversed:

Find mean linear charge density along a circular wire:

Compute the perimeter length of a Polygon:

Properties & Relations  (6) Possible Issues  (2)

The parametric form or ArcLength computes the length of possibly multiple coverings:

The region version computes the length of the image:

The length of a region of dimension other than one is Undefined:

Wolfram Research (2014), ArcLength, Wolfram Language function, https://reference.wolfram.com/language/ref/ArcLength.html (updated 2019). Text

Wolfram Research (2014), ArcLength, Wolfram Language function, https://reference.wolfram.com/language/ref/ArcLength.html (updated 2019).

CMS

Wolfram Language. 2014. "ArcLength." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/ArcLength.html.

APA

Wolfram Language. (2014). ArcLength. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ArcLength.html

BibTeX

@misc{reference.wolfram_2025_arclength, author="Wolfram Research", title="{ArcLength}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/ArcLength.html}", note=[Accessed: 11-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_arclength, organization={Wolfram Research}, title={ArcLength}, year={2019}, url={https://reference.wolfram.com/language/ref/ArcLength.html}, note=[Accessed: 11-July-2025 ]}


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4