(mpg
.plot
.scatter(x='displ', y='hwy')
.set(title='Engine Displacement in Liters vs Highway MPG',
xlabel='Engine Displacement in Liters',
ylabel='Highway MPG'))
Code:
(ggplot(mpg) +
aes(x = 'displ', y = 'hwy') +
geom_point() +
ggtitle('Engine Displacement in Liters vs Highway MPG') +
xlab('Engine Displacement in Liters') +
ylab('Highway MPG'))
Code:
px.scatter(
mpg, x='displ', y='hwy',
title='Engine Displacement in Liters vs Highway MPG',
labels=dict(
displ='Engine Displacement in Liters',
hwy='Highway MPG')
)
Code:
alt.Chart(mpg).mark_circle().encode(
alt.X(
'displ',
title='Engine Displacement in Liters',
),
alt.Y(
'hwy',
title='Highway Miles per Gallon',
),
).properties(
title='Engine Displacement in Liters'
)
Code:
ggplot(data = mpg) +
aes(x = displ, y = hwy) +
geom_point() +
ggtitle('Engine Displacement in Liters vs Highway MPG') +
xlab('Engine Displacement in Liters') +
ylab('Highway MPG')
Code:
fig, ax = pyplot.subplots()
for c, df in mpg.groupby('class'):
ax.scatter(df['displ'], df['hwy'], label=c)
ax.legend()
ax.set_title('Engine Displacement in Liters vs Highway MPG')
ax.set_xlabel('Engine Displacement in Liters')
ax.set_ylabel('Highway MPG')
Code:
(ggplot(mpg) +
aes(x = 'displ', y = 'hwy', color = 'class') +
geom_point() +
ggtitle('Engine Displacement in Liters vs Highway MPG') +
xlab('Engine Displacement in Liters') +
ylab('Highway MPG'))
Code:
px.scatter(
mpg, x='displ', y='hwy', color='class',
title='Engine Displacement in Liters vs Highway MPG',
labels=dict(
displ='Engine Displacement in Liters',
hwy='Highway MPG')
)
Code:
(
alt.Chart(
mpg,
title='Engine Displacement in Liters vs Highway MPG',
)
.mark_circle()
.encode(
alt.X(
'displ',
title='Engine Displacament in Liters',
),
alt.Y('hwy', title='Highway MPG'),
color='class',
)
)
Code:
ggplot(data = mpg) +
aes(x = displ, y = hwy, color = class) +
geom_point() +
ggtitle('Engine Displacement in Liters vs Highway MPG') +
xlab('Engine Displacement in Liters') +
ylab('Highway MPG')
Code:
ax = (mpg
.plot
.scatter(x='cty',
y='hwy',
s=10*mpg['cyl'],
alpha=.5))
ax.set_title('City MPG vs Highway MPG')
ax.set_xlabel('City MPG')
ax.set_ylabel('Highway MPG')
Code:
(ggplot(mpg) +
aes(x='cty', y='hwy', size='cyl') +
geom_point(alpha=.5))
Code:
px.scatter(
mpg, x='cty', y='hwy',
size='cyl', size_max=10,
title='City MPG vs Highway MPG',
labels=dict(cty='City MPG', hwy='Highway MPG')
)
Code:
(
alt.Chart(
mpg,
title='City MPG vs Highway MPG',
)
.mark_circle(opacity=0.3)
.encode(
x=alt.X(
'cty',
axis=alt.Axis(title='City MPG'),
),
y=alt.Y(
'hwy',
axis=alt.Axis(
title='Highway MPG'
),
),
size='cyl',
)
)
Code:
ggplot(data = mpg) +
aes(x = cty, y = hwy, size = cyl) +
geom_point(alpha=.5)
Code:
(mpg
.pipe(sns.FacetGrid,
col='class',
col_wrap=4,
aspect=.5,
size=6)
.map(pyplot.scatter, 'displ', 'hwy', s=20)
.fig.subplots_adjust(wspace=.2, hspace=.2)
)
Code:
(ggplot(mpg.assign(c=mpg['class'])) +
aes(x='displ', y='hwy') +
geom_point() +
facet_wrap(' ~ c', nrow = 2))
Code:
px.scatter(
mpg, x='displ', y='hwy',
facet_col='class', facet_col_wrap=4
)
Code:
alt.Chart(mpg).mark_circle().encode(
x=alt.X('displ'),
y=alt.Y('hwy'),
facet=alt.Facet('class:O', columns=4),
).properties(width=200, height=300)
Code:
ggplot(data = mpg) +
aes(x=displ, y=hwy) +
geom_point() +
facet_wrap(~ class, nrow = 2)
Code:
(mpg
.pipe(sns.FacetGrid,
col='cyl',
row='drv',
aspect=.9,
size=4)
.map(pyplot.scatter, 'displ', 'hwy', s=20)
.fig.subplots_adjust(wspace=.02, hspace=.02)
)
Code:
(ggplot(mpg) +
aes(x='displ', y='hwy') +
geom_point() +
facet_grid('drv ~ cyl'))
Code:
px.scatter(
mpg, x='displ', y='hwy',
facet_col='cyl', facet_row='drv',
category_orders=dict(cyl=[4,5,6,8])
)
Code:
(alt
.Chart(mpg)
.mark_circle()
.encode(x='displ', y='hwy',)
.properties(
width=100, height=150
)
.facet(column='cyl', row='drv')
)
Code:
ggplot(data = mpg) +
aes(x = displ, y = hwy) +
geom_point() +
facet_grid(drv ~ cyl)
Code:
sns.lmplot(x='displ', y='hwy',
data=mpg, size=12)
Code:
(ggplot(mpg) +
aes('displ', 'hwy') +
geom_point() +
geom_smooth(method='lm'))
Code:
import statsmodels.api as sm
from statsmodels.stats.outliers_influence import summary_table
y=mpg.hwy
x=mpg.displ
X = sm.add_constant(x)
res = sm.OLS(y, X).fit()
st, data, ss2 = summary_table(res, alpha=0.05)
preds = pd.DataFrame.from_records(data, columns=[s.replace('\n', ' ') for s in ss2])
preds['displ'] = mpg.displ
preds = preds.sort_values(by='displ')
fig = graph_objects.Figure(layout={
'title' : 'Engine Displacement in Liters vs Highway MPG',
'xaxis' : {
'title' : 'Engine Displacement in Liters'
},
'yaxis' : {
'title' : 'Highway MPG'
}
})
p1 = graph_objects.Scatter(**{
'mode' : 'markers',
'x' : mpg.displ,
'y' : mpg.hwy,
'name' : 'Points'
})
p2 = graph_objects.Scatter({
'mode' : 'lines',
'x' : preds['displ'],
'y' : preds['Predicted Value'],
'name' : 'Regression',
})
#Add a lower bound for the confidence interval, white
p3 = graph_objects.Scatter({
'mode' : 'lines',
'x' : preds['displ'],
'y' : preds['Mean ci 95% low'],
'name' : 'Lower 95% CI',
'showlegend' : False,
'line' : {
'color' : 'white'
}
})
# Upper bound for the confidence band, transparent but with fill
p4 = graph_objects.Scatter( {
'type' : 'scatter',
'mode' : 'lines',
'x' : preds['displ'],
'y' : preds['Mean ci 95% upp'],
'name' : '95% CI',
'fill' : 'tonexty',
'line' : {
'color' : 'white'
},
'fillcolor' : 'rgba(255, 127, 14, 0.3)'
})
fig.add_trace(p1)
fig.add_trace(p2)
fig.add_trace(p3)
fig.add_trace(p4)
Code:
ggplot(data = mpg) +
aes(x = displ, y = hwy) +
geom_point() +
geom_smooth(method=lm)
Code:
(ggplot(data=mpg,
mapping=aes(x='displ', y='hwy')) +
geom_point(mapping=aes(color = 'class')) +
geom_smooth(data=mpg[mpg['class'] == 'subcompact'],
se=False,
method = 'loess'
))
Code:
traces = []
for cls in mpg['class'].unique():
traces.append(graph_objects.Scatter({
'mode' : 'markers',
'x' : mpg.displ[mpg['class'] == cls],
'y' : mpg.hwy[mpg['class'] == cls],
'name' : cls
}))
subcompact = mpg[mpg['class'] == 'subcompact'].sort_values(by='displ')
traces.append(graph_objects.Scatter({
'mode' : 'lines',
'x' : subcompact.displ,
'y' : subcompact.hwy,
'name' : 'smoothing',
'line' : {
'shape' : 'spline',
'smoothing' : 1.3
}
}))
fig = graph_objects.Figure(**{
'data' : traces,
'layout' : {
'title' : 'Engine Displacement in Liters vs Highway MPG',
'xaxis' : {
'title' : 'Engine Displacement in Liters',
},
'yaxis' : {
'title' : 'Highway MPG'
}
}
})
Code:
scatter = (
alt.Chart(
mpg,
title='Engine Displacement in Liters vs Highway MPG',
)
.mark_circle()
.encode(
x=alt.X(
'displ',
axis=alt.Axis(
title='Engine Displacament in Liters'
),
),
y=alt.Y(
'hwy',
axis=alt.Axis(
title='Highway MPG'
),
),
color='class',
)
)
line = (
alt.Chart(
mpg[mpg['class'] == 'subcompact']
)
.transform_loess('displ', 'hwy')
.mark_line()
.encode(x=alt.X('displ'), y=alt.Y('hwy'))
)
scatter + line
Code:
subcompact = mpg[mpg$`class` == 'subcompact', ]
ggplot(data = mpg,
mapping = aes(x = displ, y = hwy)) +
geom_point(mapping = aes(color = class)) +
geom_smooth(data = subcompact,
se = FALSE,
method = 'loess')
Code:
(diamonds
.groupby(['cut', 'clarity'])
.size()
.unstack()
.plot.bar(stacked=True)
)
Code:
(ggplot(diamonds) +
aes(x='cut', fill='clarity') +
geom_bar())
Code:
px.histogram(
diamonds, x='cut', color='clarity',
category_orders=dict(cut=[
'Fair', 'Good', 'Very Good',
'Premium', 'Ideal'])
)
Code:
alt.data_transformers.disable_max_rows()
alt.Chart(diamonds).mark_bar().encode(
x='cut', y='count(cut)', color='clarity'
).properties(width=300)
Code:
ggplot(data = diamonds) +
aes(x = cut, fill = clarity) +
geom_bar()
Code:
(diamonds
.groupby(['cut', 'clarity'])
.size()
.unstack()
.plot.bar()
)
Code:
(ggplot(diamonds) +
aes(x='cut', fill='clarity') +
geom_bar(position = 'dodge'))
Code:
px.histogram(
diamonds, x='cut', color='clarity', barmode='group',
category_orders=dict(cut=[
'Fair', 'Good', 'Very Good',
'Premium', 'Ideal'])
)
Code:
alt.data_transformers.disable_max_rows()
alt.Chart(diamonds).mark_bar().encode(
x='clarity',
y='count(cut)',
color='clarity',
column='cut',
).properties(width=100)
Code:
ggplot(data = diamonds) +
aes(x = cut, fill = clarity) +
geom_bar(position = 'dodge')
Code:
fig, ax = pyplot.subplots()
ax.set_xlim(55, 70)
for cut in diamonds['cut'].unique():
s = diamonds[diamonds['cut'] == cut]['depth']
s.plot.kde(ax=ax, label=cut)
ax.legend()
Code:
(sns
.FacetGrid(diamonds,
hue='cut',
size=10,
xlim=(55, 70))
.map(sns.kdeplot, 'depth', shade=True)
.add_legend()
)
Code:
(ggplot(diamonds) +
aes('depth', fill='cut', color='cut') +
geom_density(alpha=0.1))
Code:
fig = figure_factory.create_distplot(
[diamonds['depth'][diamonds['cut'] == c].values
for c in diamonds.cut.unique()
],
diamonds.cut.unique(),
show_hist=False,
show_rug=False,
)
for d in fig['data']:
d.update({'fill': 'tozeroy'})
Code:
alt.data_transformers.disable_max_rows()
alt.Chart(diamonds).transform_density(
'depth',
as_=['depth', 'density'],
groupby=['cut'],
extent=[55, 70],
).mark_area(fillOpacity=0.3,).encode(
x='depth',
y='density:Q',
color='cut',
stroke='cut',
)
Code:
ggplot(diamonds) +
aes(depth, fill = cut, colour = cut) +
geom_density(alpha = 0.1) +
xlim(55, 70)
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4