A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://pystruct.github.io/generated/pystruct.learners.PrimalDSStructuredSVM.html below:

pystruct.learners.PrimalDSStructuredSVM — pystruct 0.2.4 documentation

Uses downhill simplex for optimizing an unconstraint primal.

This is basically a sanity check on all other implementations, as this is easier to check for correctness.

Methods

fit(X, Y) get_params([deep]) Get parameters for this estimator. predict(X) Predict output on examples in X. score(X, Y) Compute score as 1 - loss over whole data set. set_params(**params) Set the parameters of this estimator.
__init__(model, max_iter=100, C=1.0, verbose=0, n_jobs=1, show_loss_every=0, logger=None)
get_params(deep=True)

Get parameters for this estimator.

Parameters:

deep: boolean, optional :

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params : mapping of string to any

Parameter names mapped to their values.

predict(X)

Predict output on examples in X.

Parameters:

X : iterable

Traing instances. Contains the structured input objects.

Returns:

Y_pred : list

List of inference results for X using the learned parameters.

score(X, Y)

Compute score as 1 - loss over whole data set.

Returns the average accuracy (in terms of model.loss) over X and Y.

Parameters:

X : iterable

Evaluation data.

Y : iterable

True labels.

Returns:

score : float

Average of 1 - loss over training examples.

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4