A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://pypi.python.org/pypi/PyWavelets/ below:

PyWavelets · PyPI

Project description

Service

Master branch

GitHub

Appveyor

Read the Docs

PyWavelets

Contents

What is PyWavelets

PyWavelets is a free Open Source library for wavelet transforms in Python. Wavelets are mathematical basis functions that are localized in both time and frequency. Wavelet transforms are time-frequency transforms employing wavelets. They are similar to Fourier transforms, the difference being that Fourier transforms are localized only in frequency instead of in time and frequency.

The main features of PyWavelets are:

Documentation

Documentation with detailed examples and links to more resources is available online at http://pywavelets.readthedocs.org.

For more usage examples see the demo directory in the source package.

Installation

PyWavelets supports Python >=3.10, and is only dependent on NumPy (supported versions are currently >= 1.23.0). To pass all of the tests, Matplotlib is also required.

There are binary wheels for Intel Linux, Windows and macOS / OSX on PyPi. If you are on one of these platforms, you should get a binary (precompiled) installation with:

pip install PyWavelets

Users of the Anaconda Python distribution may wish to obtain pre-built Windows, Intel Linux or macOS / OSX binaries from the conda-forge channel. This can be done via:

conda install -c conda-forge pywavelets

Several Linux distributions have their own packages for PyWavelets, but these tend to be moderately out of date. Query your Linux package manager tool for python-pywavelets, python-wavelets, python-pywt or a similar package name.

If you want or need to install from source, you will need a working C compiler (any common one will work) and a recent version of Cython. Navigate to the PyWavelets source code directory (containing pyproject.toml) and type:

pip install .

The most recent development version can be found on GitHub at https://github.com/PyWavelets/pywt.

The latest release, including source and binary packages for Intel Linux, macOS and Windows, is available for download from the Python Package Index. You can find source releases at the Releases Page.

State of development & Contributing

PyWavelets started in 2006 as an academic project for a master thesis on Analysis and Classification of Medical Signals using Wavelet Transforms and was maintained until 2012 by its original developer. In 2013 maintenance was taken over in a new repo) by a larger development team - a move supported by the original developer. The repo move doesn’t mean that this is a fork - the package continues to be developed under the name “PyWavelets”, and released on PyPi and Github (see this issue for the discussion where that was decided).

All contributions including bug reports, bug fixes, new feature implementations and documentation improvements are welcome. Moreover, developers with an interest in PyWavelets are very welcome to join the development team!

As of 2019, PyWavelets development is supported in part by Tidelift. Help support PyWavelets with the Tidelift Subscription

Contact

Use GitHub Issues or the mailing list to post your comments or questions.

Report a security vulnerability: https://tidelift.com/security

License

PyWavelets is a free Open Source software released under the MIT license.

If you wish to cite PyWavelets in a publication, please use the following JOSS publication.

Specific releases can also be cited via Zenodo. The DOI below will correspond to the most recent release. DOIs for past versions can be found by following the link in the badge below to Zenodo:

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution Built Distributions File details

Details for the file pywavelets-1.9.0.tar.gz.

File metadata File hashes Hashes for pywavelets-1.9.0.tar.gz Algorithm Hash digest SHA256 148d12203377772bea452a59211d98649c8ee4a05eff019a9021853a36babdc8 MD5 a725b29ce4be34661acce4fc634817e5 BLAKE2b-256 5a7550581633d199812205ea8cdd0f6d52f12a624886b74bf1486335b67f01ff

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314t-win_amd64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314t-win_amd64.whl Algorithm Hash digest SHA256 3b6ff6ba4f625d8c955f68c2c39b0a913776d406ab31ee4057f34ad4019fb33b MD5 193f9c8b70ce75ca9ce0ecd1120e08d9 BLAKE2b-256 68d2a8065103f5e2e613b916489e6c85af6402a1ec64f346d1429e2d32cb8d03

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314t-win32.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314t-win32.whl Algorithm Hash digest SHA256 097f157e07858a1eb370e0d9c1bd11185acdece5cca10756d6c3c7b35b52771a MD5 9aabbadd10548f4519511aab62e6fb8f BLAKE2b-256 f11a89f5f4ebcb9d34d9b7b2ac0a868c8b6d8c78d699a36f54407a060cea0566

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314t-musllinux_1_2_x86_64.whl Algorithm Hash digest SHA256 9950eb7c8b942e9bfa53d87c7e45a420dcddbd835c4c5f1aca045a3f775c6113 MD5 a79b71926ab2e2f5b6bbfb5ce6b64758 BLAKE2b-256 ca5e90b39adff710d698c00ba9c3125e2bec99dad7c5f1a3ba37c73a78a6689f

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314t-musllinux_1_2_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314t-musllinux_1_2_aarch64.whl Algorithm Hash digest SHA256 a63bcb6b5759a7eb187aeb5e8cd316b7adab7de1f4b5a0446c9a6bcebdfc22fb MD5 a61f86e0e00472a7754345812b97177e BLAKE2b-256 e0de142ca27ee729cf64113c2560748fcf2bd45b899ff282d6f6f3c0e7f177bb

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl Algorithm Hash digest SHA256 f63f400fcd4e7007529bd06a5886009760da35cd7e76bb6adb5a5fbee4ffeb8c MD5 ba16549c3a3753da11da5a78eeac5a8f BLAKE2b-256 986176ccc7ada127f14f65eda40e37407b344fd3713acfca7a94d7f0f67fe57d

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl Algorithm Hash digest SHA256 8aeffd4f35036c1fade972a61454de5709a7a8fc9a7d177eefe3ac34d76962e5 MD5 1df400babdc0cdae449784bc4a3b6b23 BLAKE2b-256 333b336761359d07cd44a4233ca854704ff2a9e78d285879ccc82d254b9daa57

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314t-macosx_11_0_arm64.whl Algorithm Hash digest SHA256 969e369899e7eab546ea5d77074e4125082e6f9dad71966499bf5dee3758be55 MD5 232f67865b12a8bbeeb0dc3f98d8ef73 BLAKE2b-256 95b6de9e225d8cc307fbb4fda88aefa79442775d5e27c58ee4d3c8a8580ceba6

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314t-macosx_10_13_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314t-macosx_10_13_x86_64.whl Algorithm Hash digest SHA256 b47c72fb4b76d665c4c598a5b621b505944e5b761bf03df9d169029aafcb652f MD5 c4ffc8cbe29a350f30133e16b5bb8f8e BLAKE2b-256 bf1fda0c03ac99bd9d20409c0acf6417806d4cf333d70621da9f535dd0cf27fa

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314-win_amd64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314-win_amd64.whl Algorithm Hash digest SHA256 7e57792bde40e331d6cc65458e5970fd814dba18cfc4e9add9d051e901a7b7c7 MD5 bc0f45d1e1b8fceb70ca395f69c4673b BLAKE2b-256 7d661d071eae5cc3e3ad0e45334462f8ce526a79767ccb759eb851aa5b78a73a

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314-win32.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314-win32.whl Algorithm Hash digest SHA256 9902d9fc9812588ab2dce359a1307d8e7f002b53a835640e2c9388fe62a82fd4 MD5 a74459bfae27ea71f199595eb20ea088 BLAKE2b-256 3dd4af998cc71e869919e0ab45471bd43e91d055ac7bc3ce6f56cc792c9b6bc8

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314-musllinux_1_2_x86_64.whl Algorithm Hash digest SHA256 9fb7f4b11d18e2db6dd8deee7b3ce8343d45f195f3f278c2af6e3724b1b93a24 MD5 332ba8ec515a69cc2a95585711e03911 BLAKE2b-256 92745147f2f0436f7aa131cb1bc13dba32ef5f3862748ae1c7366b4cde380362

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314-musllinux_1_2_aarch64.whl Algorithm Hash digest SHA256 3226b6f62838a6ccd7782cb7449ee5d8b9d61999506c1d9b03b2baf41b01b6fd MD5 f04ec3fd5e54775e27ed290e84317972 BLAKE2b-256 766881b97f4d18491a18fbe17e06e2eee80a591ce445942f7b6f522de07813c5

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl Algorithm Hash digest SHA256 4ee1ee7d80f88c64b8ec3b5021dd1e94545cc97f0cd479fb51aa7b10f6def08e MD5 a6c16ef8258e109ac4617cf80a2352b9 BLAKE2b-256 c954777e0495acd4fb008791e84889be33d6e7fc8af095b441d939390b7d2491

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl Algorithm Hash digest SHA256 08076eb9a182ddc6054ac86868fb71df6267c341635036dc63d20bdbacd9ad7e MD5 c005de15c9c02936f9491014623a2d3a BLAKE2b-256 96d3d856a2cac8069c20144598fa30a43ca40b5df2e633230848a9a942faf04a

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314-macosx_11_0_arm64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314-macosx_11_0_arm64.whl Algorithm Hash digest SHA256 56bc36b42b1b125fd9cb56e7956b22f8d0f83c1093f49c77fc042135e588c799 MD5 2623a8b4f36a2750b59e3782ed90d2f5 BLAKE2b-256 ebe11c92ac6b538ef5388caf1a74af61cf6af16ea6d14115bb53357469cb38d6

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp314-cp314-macosx_10_13_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp314-cp314-macosx_10_13_x86_64.whl Algorithm Hash digest SHA256 53043d2f3f4e55a576f51ac594fe33181e1d096d958e01524db5070eb3825306 MD5 ae505f1f50849ecbbae7adb8037cd530 BLAKE2b-256 ba1f18c82122547c9eec2232d800b02ada1fbd30ce2136137b5738acca9d653e

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313t-win_amd64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313t-win_amd64.whl Algorithm Hash digest SHA256 47d52cf35e2afded8cfe1133663f6f67106a3220b77645476ae660ad34922cb4 MD5 9c8901082b918c1e19e52733f507f125 BLAKE2b-256 84b212a849650d618a86bbe4d8876c7e20a7afe59a8cad6f49c57eca9af26dfa

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313t-win32.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313t-win32.whl Algorithm Hash digest SHA256 81bb65facfbd7b50dec50450516e72cdc51376ecfdd46f2e945bb89d39bfb783 MD5 9b3ceb11c8db938485d068661ae87af6 BLAKE2b-256 e7edd58b540c15e36508cfeded7b0d39493e811b0dce18d9d4e6787fb2e89685

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313t-musllinux_1_2_x86_64.whl Algorithm Hash digest SHA256 3830e6657236b53a3aae20c735cccead942bb97c54bbca9e7d07bae01645fe9c MD5 8112ff85541063ffdf3a55da068d1e31 BLAKE2b-256 91fe2b70276ede7878c5fe8356ca07574db5da63e222ce39a463e84bfad135e8

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313t-musllinux_1_2_aarch64.whl Algorithm Hash digest SHA256 e0e24ad6b8eb399c49606dd1fcdcbf9749ad7f6d638be3fe6f59c1f3098821e2 MD5 51cf7e059388b7450b2a4821b5421944 BLAKE2b-256 e9cc44b002cb16f2a392f2082308dd470b3f033fa4925d3efa7c46f790ce895a

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl Algorithm Hash digest SHA256 1aa3729585408a979d655736f74b995b511c86b9be1544f95d4a3142f8f4b8b5 MD5 6ad8cb4392a4a40ec87ba9cf72c02860 BLAKE2b-256 44e8f801eb4b5f7a316ba20054948c5d6b27b879c77fab2674942e779974bd86

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl Algorithm Hash digest SHA256 144d4fc15c98da56654d0dca2d391b812b8d04127b194a37ad4a497f8e887141 MD5 0a5136a8d5deb77a9c3f98b227f11a11 BLAKE2b-256 cd3a713f731b9ed6df0c36269c8fb62be8bb28eb343b9e26b13d6abda37bce38

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313t-macosx_11_0_arm64.whl Algorithm Hash digest SHA256 7acf6f950c6deaecd210fbff44421f234a8ca81eb6f4da945228e498361afa9d MD5 d7d34cb809899be8df36264de43325e8 BLAKE2b-256 82d670afefcc1139f37d02018a3b1dba3b8fc87601bb7707d9616b7f7a76e269

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313t-macosx_10_13_x86_64.whl Algorithm Hash digest SHA256 4dc85f44c38d76a184a1aa2cb038f802c3740428c9bb877525f4be83a223b134 MD5 36b77ba5d7ebd3edb7007c130ed2e117 BLAKE2b-256 8bcdca0d9db0ff29e3843f6af60c2f5eb588794e05ca8eeb872a595867b1f3f5

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313-win_amd64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313-win_amd64.whl Algorithm Hash digest SHA256 0d70da9d7858c869e24dc254f16a61dc09d8a224cad85a10c393b2eccddeb126 MD5 b3c111b1bdbc609b5d88754b940ab58e BLAKE2b-256 0a8778ef3f9fb36cdb16ee82371d22c3a7c89eeb79ec8c9daef6222060da6c79

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313-win32.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313-win32.whl Algorithm Hash digest SHA256 9e7d60819d87dcd6c68a2d1bc1d37deb1f4d96607799ab6a25633ea484dcda41 MD5 82dd21bd3daa7af75ed8bac5ff28f5f2 BLAKE2b-256 cdb6b27ec18c72b1dee3314e297af39c5f8136d43cc130dd93cb6c178ca820e5

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313-musllinux_1_2_x86_64.whl Algorithm Hash digest SHA256 db43969c7a8fbb17693ecfd14f21616edc3b29f0e47a49b32fa4127c01312a67 MD5 e3b631c77bd750a40b77137a5c134b3d BLAKE2b-256 9244c9b25084048d9324881a19b88e0969a4141bcfdc1d218f1b4b680b7af1c1

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313-musllinux_1_2_aarch64.whl Algorithm Hash digest SHA256 c8f8b1cc2df012401cb837ee6fa2f59607c7b4fe0ff409d9a4f6906daf40dc86 MD5 b2eda4c94de84aa697b9b0a8706026a7 BLAKE2b-256 d7c7e3fbb502fca3469e51ced4f1e1326364c338be91edc5db5a8ddd26b303fa

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl Algorithm Hash digest SHA256 ae10ed46c139c7ddb8b1249cfe0989f8ccb610d93f2899507b1b1573a0e424b5 MD5 6b0ca399a122ee74b1d3bbd0d2ee7eef BLAKE2b-256 e51ba24c6ff03b026b826ad7b9267bd63cd34ce026795a0302f8a5403840b8e7

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl Algorithm Hash digest SHA256 d6e059265223ed659e5214ab52a84883c88ddf3decbf08d7ec6abb8e4c5ed7be MD5 5dc98bd858c3f1986b1d93e6451434d7 BLAKE2b-256 5a9c333969c3baad8af2e7999e83addcb7bb1d1fd48e2d812fb27e2e89582cb1

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313-macosx_11_0_arm64.whl Algorithm Hash digest SHA256 c50320fe0a4a23ddd8835b3dc9b53b09ee05c7cc6c56b81d0916f04fc1649070 MD5 254664848500bce93047897eb7df881b BLAKE2b-256 aa0cb54b86596c0df68027e48c09210e907e628435003e77048384a2dd6767e3

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp313-cp313-macosx_10_13_x86_64.whl Algorithm Hash digest SHA256 74f8455c143818e4b026fc67b27fd82f38e522701b94b8a6d1aaf3a45fcc1a25 MD5 0d8fdd21abbd9b56834f097394bf061f BLAKE2b-256 dba7dec4e450675d62946ad975f5b4d924437df42d2fae46e91dfddda2de0f5a

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp312-cp312-win_amd64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp312-cp312-win_amd64.whl Algorithm Hash digest SHA256 92bfb8a117b8c8d3b72f2757a85395346fcbf37f50598880879ae72bd8e1c4b9 MD5 9f3b123545f7191a8b0ef93cbb76ef22 BLAKE2b-256 2ca70d9ee3fe454d606e0f5c8e3aebf99d2ecddbfb681826a29397729538c8f1

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp312-cp312-win32.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp312-cp312-win32.whl Algorithm Hash digest SHA256 80b8ab99f5326a3e724f71f23ba8b0a5b03e333fa79f66e965ea7bed21d42a2f MD5 58ff48aef63afb23fa4bdf911b6f6319 BLAKE2b-256 f79844852d2fe94455b72dece2db23562145179d63186a1c971125279a1c381f

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp312-cp312-musllinux_1_2_x86_64.whl Algorithm Hash digest SHA256 5163665686219c3f43fd5bbfef2391e87146813961dad0f86c62d4aed561f547 MD5 9897c7da1680a397febddf6905b4dd45 BLAKE2b-256 ce53a3846eeefe0fb7ca63ae045f038457aa274989a15af793c1b824138caf98

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp312-cp312-musllinux_1_2_aarch64.whl Algorithm Hash digest SHA256 3747ec804492436de6e99a7b6130480e53406d047e87dc7095ab40078a515a23 MD5 f25f5c6eb1cf6144132874443d62cf78 BLAKE2b-256 481fcff6bb4ea64ff508d8cac3fe113c0aa95310a7446d9efa6829027cc2afdf

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl Algorithm Hash digest SHA256 573b650805d2f3c981a0e5ae95191c781a722022c37a0f6eba3fa7eae8e0ee17 MD5 dad29c60c49e0f5e95ea4ee9bc602274 BLAKE2b-256 0f340f54dd9c288941294898877008bcb5c07012340cc9c5db9cff1bd185d449

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl Algorithm Hash digest SHA256 07b26526db2476974581274c43a9c2447c917418c6bd03c8d305ad2a5cd9fac3 MD5 73403d4cb38827950b550890895425a1 BLAKE2b-256 0585901bb756d37dfa56baa26ef4a3577aecfe9c55f50f51366fede322f8c91d

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp312-cp312-macosx_11_0_arm64.whl Algorithm Hash digest SHA256 df7436a728339696a7aa955c020ae65c85b0d9d2b5ff5b4cf4551f5d4c50f2c7 MD5 55936d9f3e29eb14370315fd6943e358 BLAKE2b-256 3665a5549325daafc3eae4b52de076798839eaf529a07218f8fb18cccefe76a1

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp312-cp312-macosx_10_13_x86_64.whl Algorithm Hash digest SHA256 30baa0788317d3c938560c83fe4fc43817342d06e6c9662a440f73ba3fb25c9b MD5 02ff00e0eb79c8a958d4b5aa5851f5da BLAKE2b-256 5c373fda13fb2518fdd306528382d6b18c116ceafefff0a7dccd28f1034f4dd2

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp311-cp311-win_amd64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp311-cp311-win_amd64.whl Algorithm Hash digest SHA256 ed10959a17df294ef55948dcc76367d59ec7b6aad67e38dd4e313d2fe3ad47b2 MD5 c5d226b25cb0b2dd293ab13c58abbcd4 BLAKE2b-256 fd3362dbb4aea86ec9d79b283127c42cc896f4d4ff265a9aeb1337a7836dd550

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp311-cp311-win32.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp311-cp311-win32.whl Algorithm Hash digest SHA256 f8330cdbfa506000e63e79525716df888998a76414c5cd6ecd9a7e371191fb05 MD5 0e2b205ee53ca970d2637d1651866e76 BLAKE2b-256 ed155f6a6e9fdad8341e42642ed622a5f3033da4ea9d426cc3e574ae418b4726

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp311-cp311-musllinux_1_2_x86_64.whl Algorithm Hash digest SHA256 20e97b84a263003e2c7348bcf72beba96edda1a6169f072dc4e4d4ee3a6c7368 MD5 78ae81b739080671777fed3aa85e0d8e BLAKE2b-256 8253b733fbfb71853e4a5c430da56e325a763562d65241dd785f0fadb67aed6a

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp311-cp311-musllinux_1_2_aarch64.whl Algorithm Hash digest SHA256 aa859d0b686a697c87a47e29319aebe44125f114a4f8c7e444832b921f52de5a MD5 622e5869d4582bd5fee2cf63c9b38b29 BLAKE2b-256 24f789fdc1caef4b384a341a8e149253e23f36c1702bbb986a26123348624854

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl Algorithm Hash digest SHA256 d76b7fa8fc500b09201d689b4f15bf5887e30ffbe2e1f338eb8470590eb4521a MD5 ad87832f85fd51b00abd3d72442e46b6 BLAKE2b-256 d88cf316a153f7f89d2753df8a7371d15d0faab87e709fe02715dbc297c79385

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl Algorithm Hash digest SHA256 862be65481fdfecfd84c6b0ca132ba571c12697a082068921bca5b5e039f1371 MD5 cc280fb202ec7cd0fe6eb98544a68697 BLAKE2b-256 ea95a998313c8459a57e488ff2b18e24be9e836aedda3aa3a1673197deeaa59a

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp311-cp311-macosx_11_0_arm64.whl Algorithm Hash digest SHA256 0d8ed4b4d1eab9347e8fe0c5b45008ce5a67225ce5b05766b8b1fa923a5f8b34 MD5 9c7731893e6178f3a99a49afd5124979 BLAKE2b-256 b5f30fa57b6407ea9c4452b0bc182141256b9481b479ffbfc9d7fdb73afe193b

See more details on using hashes here.

File details

Details for the file pywavelets-1.9.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata File hashes Hashes for pywavelets-1.9.0-cp311-cp311-macosx_10_9_x86_64.whl Algorithm Hash digest SHA256 54662cce4d56f0d6beaa6ebd34b2960f3aa4a43c83c9098a24729e9dc20a4be2 MD5 3a67c04ca15d7584592bb09e303ddb88 BLAKE2b-256 bd8bca700d0c174c3a4eec1fbb603f04374d1fed84255c2a9f487cfaa749c865

See more details on using hashes here.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4