from math import ceil import numpy as np from matplotlib import pyplot as plt # Sample from a bivariate Gaussian distribution mean = [0,0] cov = [[0,1],[1,0]] x, y = np.random.multivariate_normal(mean, cov, 10000).T size = len(plt.cm.datad.keys()) all_maps = list(plt.cm.datad.keys()) new_maps = ['viridis', 'inferno', 'magma', 'plasma'] counter = 0 for i in xrange(4): plt.subplot(1, 4, counter + 1) plt.imshow(hist, cmap=new_maps[counter]) plt.title(new_maps[counter]) counter += 1 plt.tight_layout() plt.show()
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4