Showing content from http://mathworld.wolfram.com/RAT-FreeSet.html below:
RAT-Free Set -- from Wolfram MathWorld
Algebra Applied Mathematics Calculus and Analysis Discrete Mathematics Foundations of Mathematics Geometry History and Terminology Number Theory Probability and Statistics Recreational Mathematics Topology Alphabetical Index New in MathWorld RAT-Free Set See alsoRight Triangle Explore with Wolfram|Alpha ReferencesAbbott, H. L. "On a Conjecture of Erdős and Silverman in Combinatorial Geometry." J. Combin. Th. A 29, 380-381, 1980.Chan, W. K. "On the Largest RAT-FREE Subset of a Finite Set of Points." Pi Mu Epsilon 8, 357-367, 1987.Honsberger, R. More Mathematical Morsels. Washington, DC: Math. Assoc. Amer., pp. 250-251, 1991.Seidenberg, A. "A Simple Proof of a Theorem of Erdős and Szekeres." J. London Math. Soc. 34, 352, 1959. Referenced on Wolfram|AlphaRAT-Free Set Cite this as:
Weisstein, Eric W. "RAT-Free Set." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/RAT-FreeSet.html
Subject classifications
RetroSearch is an open source project built by @garambo
| Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4