A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://link.springer.com/10.1007/978-3-642-21295-6_9 below:

Probabilistic Rule Learning | SpringerLink

Abstract

Traditionally, rule learners have learned deterministic rules from deterministic data, that is, the rules have been expressed as logical statements and also the examples and their classification have been purely logical. We upgrade rule learning to a probabilistic setting, in which both the examples themselves as well as their classification can be probabilistic. The setting is incorporated in the probabilistic rule learner ProbFOIL, which combines the principles of the relational rule learner FOIL with the probabilistic Prolog, ProbLog. We report also on some experiments that demonstrate the utility of the approach.

This is a preview of subscription content, log in via an institution to check access.

Preview

Unable to display preview. Download preview PDF.

Similar content being viewed by others References
  1. Pan, R., Peng, Y., Ding, Z.: Belief update in bayesian networks using uncertain evidence. In: ICTAI 2006: Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence, pp. 441–444. IEEE Computer Society, Washington, DC, USA (2006)

    Chapter  Google Scholar 

  2. Karalic, A., Bratko, I.: First order regression. Machine Learning 26(2-3), 147–176 (1997)

    Article  MATH  Google Scholar 

  3. Srinivasan, A., Page, D., Camacho, R., King, R.D.: Quantitative pharmacophore models with inductive logic programming. Machine Learning 64(1-3), 65–90 (2006)

    Article  MATH  Google Scholar 

  4. De Raedt, L., Kimmig, A., Toivonen, H.: Problog: A probabilistic Prolog and its application in link discovery. In: Veloso, M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 2462–2467 (2007)

    Google Scholar 

  5. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the efficient execution of probLog programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 175–189. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  7. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  8. Fürnkranz, J., Flach, P.A.: Roc ‘n’ rule learning — towards a better understanding of covering algorithms. Machine Learning 58(1), 39–77 (2005)

    Article  MATH  Google Scholar 

  9. Fürnkranz, J., Widmer, G.: Incremental reduced error pruning. In: Cohen, W., Hirsh, H. (eds.) ICML 1994: Proceedings of the 11th International Conference on Machine Learning, pp. 70–77. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  10. Dietterich, T., Michalski, R.: Learning to predict sequences. In: Michalski, R., Carbonell, J., Mitchell, T. (eds.) Machine learning: An Artificial Intelligence Approach, vol. 2. Morgan Kaufmann, San Francisco (1986)

    Google Scholar 

  11. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)

    Google Scholar 

  12. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

Download references

Author information Authors and Affiliations
  1. Department of Computer Science, Katholieke Universiteit Leuven, Belgium

    Luc De Raedt & Ingo Thon

Authors
  1. Luc De Raedt
  2. Ingo Thon
Editor information Editors and Affiliations
  1. Dipartimento di Sistemi e Informatica, Universitá degli Studi di Firenze, Italy

    Paolo Frasconi

  2. Dipartimento di Informatica, Università degli Studi di Bari, Via E. Orabona 4, 70125, Bari, Italy

    Francesca A. Lisi

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper Cite this paper

De Raedt, L., Thon, I. (2011). Probabilistic Rule Learning. In: Frasconi, P., Lisi, F.A. (eds) Inductive Logic Programming. ILP 2010. Lecture Notes in Computer Science(), vol 6489. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21295-6_9

Download citation

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4