GNU General Public License, GPLv3
Data management of whole-genome sequence variant calls with hundreds of thousands of individuals: genotypic data (e.g., SNVs, indels and structural variation calls) and annotations in SeqArray GDS files are stored in an array-oriented and compressed manner, with efficient data access using the R programming language.
The SeqArray package is built on top of Genomic Data Structure (GDS) data format, and defines required data structure for a SeqArray file. GDS is a flexible and portable data container with hierarchical structure to store multiple scalable array-oriented data sets. It is suited for large-scale datasets, especially for data which are much larger than the available random-access memory. It also offers the efficient operations specifically designed for integers of less than 8 bits, since a diploid genotype usually occupies fewer bits than a byte. Data compression and decompression are available with relatively efficient random access. A high-level R interface to GDS files is available in the package gdsfmt.
Release Version: v1.48.0
http://www.bioconductor.org/packages/SeqArray
Zheng X, Gogarten S, Lawrence M, Stilp A, Conomos M, Weir BS, Laurie C, Levine D (2017). SeqArray -- A storage-efficient high-performance data format for WGS variant calls. Bioinformatics. DOI: 10.1093/bioinformatics/btx145.
Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012). A High-performance Computing Toolset for Relatedness and Principal Component Analysis of SNP Data. Bioinformatics. DOI: 10.1093/bioinformatics/bts606.
Installation (requiring ≥ R_v3.5.0)if (!requireNamespace("BiocManager", quietly=TRUE)) install.packages("BiocManager") BiocManager::install("SeqArray")
library("devtools") install_github("zhengxwen/gdsfmt") install_github("zhengxwen/SeqArray")
The install_github()
approach requires that you build from source, i.e. make
and compilers must be installed on your system -- see the R FAQ for your operating system; you may also need to install dependencies manually.
wget --no-check-certificate https://github.com/zhengxwen/gdsfmt/tarball/master -O gdsfmt_latest.tar.gz wget --no-check-certificate https://github.com/zhengxwen/SeqArray/tarball/master -O SeqArray_latest.tar.gz R CMD INSTALL gdsfmt_latest.tar.gz R CMD INSTALL SeqArray_latest.tar.gz ## Or curl -L https://github.com/zhengxwen/gdsfmt/tarball/master/ -o gdsfmt_latest.tar.gz curl -L https://github.com/zhengxwen/SeqArray/tarball/master/ -o SeqArray_latest.tar.gz R CMD INSTALL gdsfmt_latest.tar.gz R CMD INSTALL SeqArray_latest.tar.gz
library(SeqArray) gds.fn <- seqExampleFileName("gds") # open a GDS file f <- seqOpen(gds.fn) # display the contents of the GDS file f # close the file seqClose(f)
## Object of class "SeqVarGDSClass" ## File: SeqArray/extdata/CEU_Exon.gds (298.6K) ## + [ ] * ## |--+ description [ ] * ## |--+ sample.id { Str8 90 LZMA_ra(35.8%), 258B } * ## |--+ variant.id { Int32 1348 LZMA_ra(16.8%), 906B } * ## |--+ position { Int32 1348 LZMA_ra(64.6%), 3.4K } * ## |--+ chromosome { Str8 1348 LZMA_ra(4.63%), 158B } * ## |--+ allele { Str8 1348 LZMA_ra(16.7%), 902B } * ## |--+ genotype [ ] * ## | |--+ data { Bit2 2x90x1348 LZMA_ra(26.3%), 15.6K } * ## | |--+ ~data { Bit2 2x1348x90 LZMA_ra(29.3%), 17.3K } ## | |--+ extra.index { Int32 3x0 LZMA_ra, 19B } * ## | \--+ extra { Int16 0 LZMA_ra, 19B } ## |--+ phase [ ] ## | |--+ data { Bit1 90x1348 LZMA_ra(0.91%), 138B } * ## | |--+ ~data { Bit1 1348x90 LZMA_ra(0.91%), 138B } ## | |--+ extra.index { Int32 3x0 LZMA_ra, 19B } * ## | \--+ extra { Bit1 0 LZMA_ra, 19B } ## |--+ annotation [ ] ## | |--+ id { Str8 1348 LZMA_ra(38.4%), 5.5K } * ## | |--+ qual { Float32 1348 LZMA_ra(2.26%), 122B } * ## | |--+ filter { Int32,factor 1348 LZMA_ra(2.26%), 122B } * ## | |--+ info [ ] ## | | |--+ AA { Str8 1348 LZMA_ra(25.6%), 690B } * ## | | |--+ AC { Int32 1348 LZMA_ra(24.2%), 1.3K } * ## | | |--+ AN { Int32 1348 LZMA_ra(19.8%), 1.0K } * ## | | |--+ DP { Int32 1348 LZMA_ra(47.9%), 2.5K } * ## | | |--+ HM2 { Bit1 1348 LZMA_ra(150.3%), 254B } * ## | | |--+ HM3 { Bit1 1348 LZMA_ra(150.3%), 254B } * ## | | |--+ OR { Str8 1348 LZMA_ra(20.1%), 342B } * ## | | |--+ GP { Str8 1348 LZMA_ra(24.4%), 3.8K } * ## | | \--+ BN { Int32 1348 LZMA_ra(20.9%), 1.1K } * ## | \--+ format [ ] ## | \--+ DP [ ] * ## | |--+ data { Int32 90x1348 LZMA_ra(25.1%), 118.8K } * ## | \--+ ~data { Int32 1348x90 LZMA_ra(24.1%), 114.2K } ## \--+ sample.annotation [ ] ## \--+ family { Str8 90 LZMA_ra(57.1%), 222B }Key Functions in the SeqArray Package Function Description seqVCF2GDS Reformat VCF files » seqSetFilter Define a data subset of samples or variants » seqGetData Get data from a SeqArray file with a defined filter » seqApply Apply a user-defined function over array margins » seqBlockApply Apply a user-defined function over array margins via blocking » seqParallel Apply functions in parallel » ...
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4