Metadata formats for display devices
Extended Display Identification Data (EDID) and Enhanced EDID (E-EDID) are metadata formats for display devices to describe their capabilities to a video source (e.g., graphics card or set-top box). The data format is defined by a standard published by the Video Electronics Standards Association (VESA).
The EDID data structure includes manufacturer name and serial number, product type, phosphor or filter type (as chromaticity data), timings supported by the display, display size, luminance data and (for digital displays only) pixel mapping data.
DisplayID is a VESA standard targeted to replace EDID and E-EDID extensions with a uniform format suited for both PC monitor and consumer electronics devices.
EDID structure (base block) versions range from v1.0 to v1.4; all these define upwards-compatible 128-byte structures. Version 2.0 defined a new 256-byte structure but it has been deprecated and replaced by E-EDID which supports multiple extension blocks.[citation needed] HDMI versions 1.0–1.3c use E-EDID v1.3.[1]
Before Display Data Channel (DDC) and EDID were defined, there was no standard way for a graphics card to know what kind of display device it was connected to. Some VGA connectors in personal computers provided a basic form of identification by connecting one, two or three pins to ground, but this coding was not standardized.
This problem is solved by EDID and DDC, as it enables the display to send information to the graphics card it is connected to. The transmission of EDID information usually uses the Display Data Channel protocol, specifically DDC2B, which is based on I²C-bus (DDC1 used a different serial format which never gained popularity). The data is transmitted via the cable connecting the display and the graphics card; VGA, DVI, DisplayPort and HDMI are supported.[citation needed]
The EDID is often stored in the monitor in the firmware chip called serial EEPROM (electrically erasable programmable read-only memory) and is accessible via the I²C-bus at address 0x50
. The EDID PROM can often be read by the host PC even if the display itself is turned off.
Many software packages can read and display the EDID information, such as read-edid[2] for Linux and DOS, PowerStrip[3] for Microsoft Windows and the X.Org Server for Linux and BSD unix. Mac OS X natively reads EDID information and programs such as SwitchResX[4] or DisplayConfigX[5] can display the information as well as use it to define custom resolutions.
E-EDID was introduced at the same time as E-DDC, which supports multiple extensions blocks and deprecated EDID version 2.0 structure (it can be incorporated in E-EDID as an optional extension block). Data fields for preferred timing, range limits, and monitor name are required in E-EDID. E-EDID also adds support for the Dual GTF curve concept and partially changed the encoding of aspect ratio within the standard timings.
With the use of extensions, E-EDID structure can be extended up to 32 KiB, because the E-DDC added the capability to address multiple (up to 128) 256 byte segments.
EDID Extensions assigned by VESA[edit]00
)02
)10
)20
)40
)50
)60
)70
)A7
, AF
, BF
)F0
)FF
): contains information such as subpixel layout[6]FF
): According to LS-EXT, actual contents varies from manufacturer. However, the value is later used by DDDB.Some graphics card drivers have historically coped poorly with the EDID, using only its standard timing descriptors rather than its Detailed Timing Descriptors (DTDs). Even in cases where the DTDs were read, the drivers are/were still often limited by the standard timing descriptor limitation that the horizontal/vertical resolutions must be evenly divisible by 8. This means that many graphics cards cannot express the native resolutions of the most common widescreen flat-panel displays and liquid-crystal display TVs. The number of vertical pixels is calculated from the horizontal resolution and the selected aspect ratio. To be fully expressible, the size of widescreen display must thus be a multiple of 16×9 pixels. For 1366×768 pixel Wide XGA panels the nearest resolution expressible in the EDID standard timing descriptor syntax is 1360×765 pixels, typically leading to 3-pixel-thin black bars. Specifying 1368 pixels as the screen width would yield an unnatural screen height of 769.5 pixels.
Many Wide XGA panels do not advertise their native resolution in the standard timing descriptors, instead offering only a resolution of 1280×768. Some panels advertise a resolution only slightly smaller than the native, such as 1360×765. For these panels to be able to show a pixel perfect image, the EDID data must be ignored by the display driver or the driver must correctly interpret the DTD and be able to resolve resolutions whose size is not divisible by 8. Special programs are available to override the standard timing descriptors from EDID data. Even this is not always possible, as some vendors' graphics drivers (notably those of Intel) require specific registry hacks to implement custom resolutions, which can make it very difficult to use the screen's native resolution.[7]
EDID 1.4 data format[edit] Structure, version 1.4[edit] EDID structure, version 1.4[8][9] Bytes Description 0–19 Header information 0–7 Fixed header pattern:00 FF FF FF FF FF FF 00
8–9 Manufacturer ID. This is a legacy Plug and Play ID assigned by UEFI forum, which is a big-endian 16-bit value made up of three 5-bit letters: 00001, A; 00010, B; ...; 11010, Z. E.g.: 24 4d, 0 01001 00010 01101, "IBM"; "PHL" (Philips). Bit 15 0
= reserved Bits 14–10 First letter of manufacturer ID (byte 8, bits 6–2) Bits 9–5 Second letter of manufacturer ID (byte 8, bit 1 through byte 9 bit 5) Bits 4–0 Third letter of manufacturer ID (byte 9 bits 4–0) 10–11 Manufacturer product code. 16-bit hex number, little-endian. For Example, "PHL" + "C0CF". 12–15 Serial number. 32 bits, little-endian. 16 Week of manufacture; or FF
model year flag. Week numbering is not consistent between manufacturers. 17 Year of manufacture, or year of model, if model year flag is set. Year = datavalue + 1990. 18 EDID version, usually 01
(for 1.3 and 1.4) 19 EDID revision, usually 03
(for 1.3) or 04
(for 1.4) 20–24 Basic display parameters 20 Video input parameters bitmap Bit 7 = 1
Digital input. If set, the following bit definitions apply: Bits 6–4 Bit depth:
000
= undefined001
= 6010
= 8011
= 10100
= 12101
= 14110
= 16 bits per color 111
= reserved
0000
= undefined0001
= DVI0010
= HDMIa0011
= HDMIb0100
= MDDI0101
= DisplayPort
0
Analog input. If clear, the following bit definitions apply: Bits 6–5 Video white and sync levels, relative to blank:
00
= +0.7/−0.3 V 01
= +0.714/−0.286 V 10
= +1.0/−0.4 V 11
= +0.7/0 V (EVC)
00
= RGB 4:4:401
= RGB 4:4:4 + YCrCb 4:4:410
= RGB 4:4:4 + YCrCb 4:2:211
= RGB 4:4:4 + YCrCb 4:4:4 + YCrCb 4:2:2
00
= monochrome or grayscale01
= RGB color10
= non-RGB color11
= undefined
01 01
hex. The following definitions apply in each record: 38 Standard timing 1: X resolution, 00
= reserved; otherwise, (datavalue + 31) × 8 (256–2288 pixels). 39 Bits 7–6 Standard timing 1: Image aspect ratio:
00
= 16:1001
= 4:310
= 5:411
= 16:9
(Versions prior to 1.3 defined 00
as 1:1.)
00
= reserved; otherwise in 10 kHz units (0.01–655.35 MHz, little-endian). 2 Horizontal active pixels 8 lsbits (0–255) 3 Horizontal blanking pixels 8 lsbits (0–255) End of active to start of next active. 4 Bits 7–4 Horizontal active pixels 4 msbits (0–15) Bits 3–0 Horizontal blanking pixels 4 msbits (0–15) 5 Vertical active lines 8 lsbits (0–255) 6 Vertical blanking lines 8 lsbits (0–255) 7 Bits 7–4 Vertical active lines 4 msbits (0–15) Bits 3–0 Vertical blanking lines 4 msbits (0–15) 8 Horizontal front porch (sync offset) pixels 8 lsbits (0–255) From blanking start 9 Horizontal sync pulse width pixels 8 lsbits (0–255) 10 Bits 7–4 Vertical front porch (sync offset) lines 4 lsbits (0–15) Bits 3–0 Vertical sync pulse width lines 4 lsbits (0–15) 11 Bits 7–6 Horizontal front porch (sync offset) pixels 2 msbits (0–3) Bits 5–4 Horizontal sync pulse width pixels 2 msbits (0–3) Bits 3–2 Vertical front porch (sync offset) lines 2 msbits (0–3) Bits 1–0 Vertical sync pulse width lines 2 msbits (0–3) 12 Horizontal image size, mm, 8 lsbits (0–255 mm, 161 in) 13 Vertical image size, mm, 8 lsbits (0–255 mm, 161 in) 14 Bits 7–4 Horizontal image size, mm, 4 msbits (0–15) Bits 3–0 Vertical image size, mm, 4 msbits (0–15) 15 Horizontal border pixels (one side; total is twice this) (0–255) 16 Vertical border lines (one side; total is twice this) (0–255) 17 Features bitmap Bit 7 Signal Interface Type:
0
= non-interlaced;1
= interlaced.
00
x
= none, bit 0 is "don't care";01
0
= field sequential, right during stereo sync;10
0
= field sequential, left during stereo sync;01
1
= 2-way interleaved, right image on even lines;10
1
= 2-way interleaved, left image on even lines;11
0
= 4-way interleaved;11
1
= side-by-side interleaved.
0
Analog sync.
0
= analog composite;1
= bipolar analog composite.
0
= without serrations;1
= with serrations (H-sync during V-sync).
0
= sync on green signal only;1
= sync on all three (RGB) video signals.
10
Digital sync., composite (on HSync).
0
= without serration;1
= with serration (H-sync during V-sync).
0
= negative;1
= positive.
11
Digital sync., separate
0
= negative;1
= positive.
0
= negative;1
= positive.
When used for another descriptor, the pixel clock and some other bytes are set to 0:
Monitor Descriptors[edit] EDID Monitor Descriptors[8] Bytes Description 0–10
= Monitor Descriptor (cf. Detailed Timing Descriptor). 2 0
= reserved 3 Descriptor type. FA
–FF
currently defined. 00
–0F
reserved for vendors. 4 0
= reserved, except for Display Range Limits Descriptor. 5–17 Defined by descriptor type. If text, code page 437 text, terminated (if less than 13 bytes) with LF and padded with SP.
Currently defined descriptor types are:
FF
: Monitor serial number (ASCII text)FE
: Unspecified text (ASCII text)FD
: Monitor range limits. 6- or 13-byte (with additional timing) binary descriptor.FC
: Monitor name (ASCII text), for example "PHL 223V5".FB
: Additional white point data. 2× 5-byte descriptors, padded with 0A 20 20
.FA
: Additional standard timing identifiers. 6× 2-byte descriptors, padded with 0A
.F9
: Display Color Management (DCM).F8
: CVT 3-Byte Timing Codes.F7
: Additional standard timing 3.10
: Dummy identifier.00–0F
: Manufacturer reserved descriptors.00 00
= Display Descriptor 2 00
= reserved 3 FD
= Display Range Limits Descriptor 4 Offsets for display range limits Bits 7–4 00
= reserved Bits 3–2 Horizontal rate offsets:
00
= none;10
= +255 kHz for max. rate;11
= +255 kHz for max. and min. rates.
00
= none;10
= +255 Hz for max. rate;11
= +255 Hz for max. and min. rates.
00
= Default GTF (when basic display parameters byte 24, bit 0 is set).01
= No timing information.02
= Secondary GTF supported, parameters as follows.04
= CVT (when basic display parameters byte 24, bit 0 is set), parameters as follows.
00
or 01
, padded with 0A 20 20 20 20 20 20
). With GTF secondary curve[edit] EDID Display Range Limits with GTF Secondary curve[8] Bytes Description 10 02
11 00
= reserved 12 Start frequency for secondary curve, divided by 2 kHz (0–510 kHz) 13 GTF C value, multiplied by 2 (0–127.5) 14–15 GTF M value (0–65535, little-endian) 16 GTF K value (0–255) 17 GTF J value, multiplied by 2 (0–127.5) EDID Display Range Limits with CVT support[8] Bytes Description 10 04
11 Bits 7–4 CVT major version (1–15) Bits 3–0 CVT minor version (0–15) 12 Bits 7–2 Additional clock precision in 0.25 MHz increments
0
) 14 Aspect ratio bitmap Bit 7 4∶3 Bit 6 16∶9 Bit 5 16∶10 Bit 4 5∶4 Bit 3 15∶9 Bits 2–0 000
= reserved 15 Bits 7–5 Aspect ratio preference:
000
= 4∶3001
= 16∶9010
= 16∶10011
= 5∶4100
= 15∶9
000
= reserved 16 Scaling support bitmap Bit 7 Horizontal shrink Bit 6 Horizontal stretch Bit 5 Vertical shrink Bit 4 Vertical stretch Bits 3–0 0000
= reserved 17 Preferred vertical refresh rate (1–255) Additional white point descriptor[edit] EDID additional white point descriptor[8] Bytes Description 0–4 00 00 00
FB
00
5 White point index number (1–255). Usually 1; 0 indicates descriptor not used. 6 White point CIE xy coordinates least-significant bits (like EDID byte 26) Bits 7–4 000
= reserved Bits 3–2 White point x value least-significant 2 bits Bits 1–0 White point y value least-significant 2 bits 7 White point x value most significant 8 bits (like EDID byte 27) 8 White point y value most significant 8 bits (like EDID byte 28) 9 datavalue = (gamma − 1)×100 (1.0–3.54, like EDID byte 23) 10–14 Second descriptor. Index number starts with 2; if 0
= unused 15–17 Unused, padded with 0A 20 20
. Color management data descriptor[edit] EDID color management data descriptor[8] Bytes Description 0–4 00 00 00
F9
00
5 Version: 03
6 Red a3 lsb 7 Red a3 msb 8 Red a2 lsb 9 Red a2 msb 10 Green a3 lsb 11 Green a3 msb 12 Green a2 lsb 13 Green a2 msb 14 Blue a3 lsb 15 Blue a3 msb 16 Blue a2 lsb 17 Blue a2 msb CVT 3-byte timing codes descriptor[edit] EDID CVT 3-byte timing codes descriptor[8] Bytes Description 0–4 00 00 00
F8
00
5 Version: 01
6-8 CVT timing descriptor #1 6 Addressable lines per field 8-bit lsb 7 Bits 7–4 Addressable lines per field 4-bit msb Bits 3–2 Aspect ratio:
00
= 4∶301
= 16∶910
= 16∶1011
= 15∶9
00
= reserved 8 Bit 7 0
= reserved Bits 6–5 Preferred vertical rate:
00
: 50 Hz01
: 60 Hz10
: 75 Hz11
: 85 Hz
V e r t i c a l l i n e s = ( A d d r e s s a b l e l i n e s p e r f i e l d + 1 ) ∗ 2 {\displaystyle {\mathsf {Vertical\ lines}}=({\mathsf {Addressable\ lines\ per\ field}}+1)*2}
H o r i z o n t a l p i x e l s = ⌊ V e r t i c a l l i n e s ∗ A s p e c t r a t i o / 8 ⌋ ∗ 8 {\displaystyle {\mathsf {Horizontal\ pixels}}=\lfloor {\mathsf {Vertical\ lines}}*{\mathsf {Aspect\ ratio}}/8\rfloor *8}
00 00 00
F7
00
5 Version: 10
6 Bit 7 640×350 @ 85 Hz Bit 6 640×400 Bit 5 720×400 Bit 4 640×480 Bit 3 848×480 @ 60 Hz Bit 2 800×600 @ 85 Hz Bit 1 1024×768 Bit 0 1152×864 7 Bit 7 1280×768 @ 60 Hz (CVT-RB) Bit 6 @ 60 Hz Bit 5 @ 75 Hz Bit 4 @ 85 Hz Bit 3 1280×960 @ 60 Hz Bit 2 @ 85 Hz Bit 1 1280×1024 @ 60 Hz Bit 0 @ 85 Hz 8 Bit 7 1360×768 @ 60 Hz (CVT-RB) Bit 6 1280×768 @ 60 Hz Bit 5 1440×900 @ 60 Hz (CVT-RB) Bit 4 @ 75 Hz Bit 3 @ 85 Hz Bit 2 1400×1050 @ 60 Hz (CVT-RB) Bit 1 @ 60 Hz Bit 0 @ 75 Hz 9 Bit 7 @ 85 Hz Bit 6 1680×1050 @ 60 Hz (CVT-RB) Bit 5 @ 60 Hz Bit 4 @ 75 Hz Bit 3 @ 85 Hz Bit 2 1600×1200 @ 60 Hz Bit 1 @ 65 Hz Bit 0 @ 70 Hz 10 Bit 7 @ 75 Hz Bit 6 @ 85 Hz Bit 5 1792×1344 @ 60 Hz Bit 4 @ 75 Hz Bit 3 1856×1392 @ 60 Hz Bit 2 @ 75 Hz Bit 1 1920×1200 @ 60 Hz (CVT-RB) Bit 0 @ 60 Hz 11 Bit 7 @ 75 Hz Bit 6 @ 85 Hz Bit 5 1920×1440 @ 60 Hz Bit 4 @ 75 Hz Bits 3–0 0000
= reserved 12–17 Unused, must be 0
. CTA EDID Timing Extension Block [edit]
The CTA EDID Extension was first introduced in EIA/CEA-861.
The ANSI/CTA-861 industry standard, which according to CTA is now their "Most Popular Standard",[10] has since been updated several times, most notably with the 861-B revision (published in May 2002, which added version 3 of the extension, adding Short Video Descriptors and advanced audio capability/configuration information), 861-D (published in July 2006 and containing updates to the audio segments), 861-E in March 2008,[11] 861-F, which was published on June 4, 2013,[12] 861-H in December 2020,[13] and, most recently, 861-I, which was published in February 2023.[14] Coinciding with the publication of CEA-861-F in 2013, Brian Markwalter, senior vice president, research and standards, stated: "The new edition includes a number of noteworthy enhancements, including support for several new Ultra HD and widescreen video formats and additional colorimetry schemes.”[15]
Version CTA-861-G,[16] originally published in November 2016, was made available for free in November 2017, along with updated versions -E and -F, after some necessary changes due to a trademark complaint. All CTA standards are free to everyone since May 2018.[17][18]
The most recent full version is CTA-861-I,[19] published in February 2023, available for free after registration. It combines the previous version, CTA-861-H,[20] from January 2021 with an amendment, CTA-861.6,[21] published in February 2022 and includes a new formula to calculate Video Timing Formats, OVT.[22] Other changes include a new annex to elaborate on the audio speaker room configuration system that was introduced with the 861.2 amendment, and some general clarifications and formatting cleanup.
An amendment to CTA-861-I, CTA-861.7,[23] was published in June 2024. It contains updates to CTA 3D Audio, and clarifications on Content Type Indication, and on 4:2:0 support for VTDBs and VFDBs. It also introduces a new Product ID Data Block, to replace the Manufacturer PNP ID in the first block of the EDID, since the UEFI is phasing out assigning new PNP IDs.
CTA Extension Block[edit]Version 1 of the extension block (as defined in CEA−861) allowed the specification of video timings only through the use of 18-byte Detailed Timing Descriptors (DTD) (as detailed in EDID 1.3 data format above). DTD timings are listed in order of preference in the CEA EDID Timing Extension.
Version 2 (as defined in 861-A) added the capability to designate a number of DTDs as "native" (i.e., matching the resolution of the display) and also included some "basic discovery" functionality for whether the display device contains support for "basic audio", YCBCR pixel formats, and underscan.
Version 3 (from the 861-B spec onward) allows two different ways to specify digital video timing formats: As in Version 1 & 2 by the use of 18-byte DTDs, or by the use of the Short Video Descriptor (SVD) (see below). HDMI 1.0–1.3c uses this[which?] version.
Version 3 also defines a format for a collection of data blocks, which in turn can contain a number of individual descriptors. This Data Block Collection (DBC) initially had four types of Data Blocks (DBs): Video Data Blocks containing the aforementioned Short Video Descriptor (SVD), Audio Data Blocks containing Short Audio Descriptors (SAD), Speaker Allocation Data Blocks containing information about the speaker configuration of the display device, and Vendor Specific Data Blocks which can contain information specific to a given vendor's use. Subsequent versions of CTA-861 defined additional data blocks.
CTA Extension data format[edit] Byte Description 0 Extension tag (which kind of extension block this is);02
for CTA EDID 1 Revision number (version number); 03
for version 3 2 Byte number (decimal) within this block where the 18-byte DTDs begin. If no non-DTD data is present in this extension block, the value should be set to 04
(the byte after next). If set to 00
, there are no DTDs present in this block and no non-DTD data. 3 With version 2 and up: number of Native DTDs present, other information. Reserved with earlier versions. Bit 7 1
if display supports underscan, 0
if not Bit 6 1
if display supports basic audio, 0
if not Bit 5 1
if display supports YCBCR 4∶4∶4, 0
if not Bit 4 1
if display supports YCBCR 4∶2∶2, 0
if not Bit 3–0 Total number of native formats in the DTDs included in this block 4–126 With version 3 and up: Data Block Collection, starting at byte 4, ending immediately before the byte specified in byte 2. If byte 2 is 04
, the collection is of zero length (i.e. not present). If byte 2 is 00
, no DTDs are present and the DBC takes up the entire remaining EDID block ahead of the checksum. Reserved with earlier versions. 18-byte descriptors, starting at the byte specified in byte 2 (if non-zero). Consecutive descriptors are present while the bytes 0–1 of each are not 00 00
. Padding, from the absence of an 18-byte descriptor onwards; must be 00
. 127 Checksum. Value such that the one-byte sum of all 128 bytes is 00
.
The Data Block Collection contains one or more data blocks detailing video, audio, and speaker placement information about the display. The blocks can be placed in any order, and the initial byte of each block defines both its type and its length:
Data block header Byte Description 0 Bit 7–5 Block Type Tag001
1: Audio (ADB, containing SADs)010
2: Video (VDB, containing SVDs)011
3: Vendor Specific (VSDB)100
4: Speaker Allocation (SADB)101
5: VESA Display Transfer Characteristic (VESA DTCDB)110
6: Video Format (VFDB, containing VFDs)111
7: Use Extended TagIf the Tag code is 7, an Extended Tag Code is present in the first payload byte of the data block, and the second payload byte represents the first payload byte of the extended data block.
Extended Block Type Tag Byte Description 1 Bit 7–0 Extended Block Type Tag00000000
0: Video Capability (VCDB)00000001
1: Vendor Specific Video (VSVDB)00000010
2: VESA Display Device (VESA DDDB)00000011
3: reserved for VESA00000100
4: reserved for HDMI00000101
5: Colorimetry (CDB)00000110
6: HDR Static Metadata (HDR SMDB)00000111
7: HDR Dynamic Metadata (HDR DMDB)00001000
8: Native Video Resolution (NVRDB)00001101
13: Video Format Preference (VFPDB)00001110
14: YCBCR 4:2:0 Video (Y420VDB)00001111
15: YCBCR 4:2:0 Capability Map (Y420CMDB)00010000
16: reserved for CTA (CTA MAF)00010001
17: Vendor Specific Audio (VSADB)00010010
18: HDMI Audio (HDMI ADB)00010011
19: Room Configuration (RCDB)00010100
20: Speaker Location (SLDB, containing SLDs)00100000
32: InfoFrame (IFDB)00100001
33: reserved00100010
34: Type VII video timing (T7VTDB)00100011
35: Type VIII video timing (T8VTDB)00101010
42: Type X video timing (T10VTDB)01111000
120: HDMI Forum EDID Extension Override (HF-EEODB)01111001
121: HDMI Forum Sink Capbility (HF-SCDB)01111010
122: HDMI Forum Source-Based Tone Mapping (HF-SBTMDB)Once one data block has ended, the next byte is assumed to be the beginning of the next data block. This is the case until the byte (designated in byte 2, above) where the DTDs are known to begin.
As noted, several data blocks are defined by the extension.
The Video Data Blocks will contain one or more 1-byte Short Video Descriptors (SVDs).
Byte Description 0 Data block header 1 Bit 7 1 to designate that this should be considered a "native" resolution, 0 for non-native. Used for 7-bit VICs 1 – 64 only, otherwise this is the MSB for the 8-bit VIC. Bit 6–0 VIC: Index value to a table of standard resolutions/timings from EIA/CEA-861: EIA/CEA-861 predefined standard resolutions and timings[edit] EIA/CEA-861 standard resolutions and timings VIC Short name Aspect ratio Clock Active Total Field rate (Hz) DAR PAR Pixel (MHz) V (Hz) H (kHz) H V H V 1 DMT0659 4∶3 1∶1 25.175 59.94 31.469 640 480 800 525 60 2 480p 4∶3 8∶9 27 59.94 31.469 720 480 858 525 60 3 480pH 16∶9 32∶27 27 59.94 31.469 720 480 858 525 60 4 720p 16∶9 1∶1 74.25 60 45.0 1280 720 1650 750 60 5 1080i 16∶9 1∶1 74.25 60 33.75 1920 540 2200 562.5 60 6 480i 4∶3 8∶9 27 59.94 15.734 1440 240 1716 262.5 60 7 480iH 16∶9 32∶27 27 59.94 15.734 1440 240 1716 262.5 60 8 240p 4∶3 4∶9 27 59.826 15.734 1440 240 1716 262.5 60 9 240pH 16∶9 16∶27 27 59.826 15.734 1440 240 1716 262.5 60 10 480i4x 4∶3 2:9-20:9 54 59.94 15.734 2880 240 3432 262.5 60 11 480i4xH 16∶9 8:27-80:27 54 59.94 15.734 2880 240 3432 262.5 60 12 240p4x 4∶3 1:9-10:9 54 60 15.734 2880 240 3432 262.5 60 13 240p4xH 16∶9 4:27-40:27 54 60 15.734 2880 240 3432 262.5 60 14 480p2x 4∶3 4:9, 8∶9 54 59.94 31.469 1440 480 1716 525 60 15 480p2xH 16∶9 16:27, 32∶27 54 59.94 31.469 1440 480 1716 525 60 16 1080p 16∶9 1∶1 148.5 60 67.5 1920 1080 2200 1125 60 17 576p 4∶3 16∶15 27 50 31.25 720 576 864 625 50 18 576pH 16∶9 64∶45 27 50 31.25 720 576 864 625 50 19 720p50 16∶9 1∶1 74.25 50 37.5 1280 720 1980 750 50 20 1080i25 16∶9 1∶1 74.25 50 28.125 1920 540 2640 562.5 50 21 576i 4∶3 16∶15 27 50 15.625 1440 288 1728 312.5 50 22 576iH 16∶9 64∶45 27 50 15.625 1440 288 1728 312.5 50 23 288p 4∶3 8∶15 27 50 15.625 1440 288 1728 313 50 24 288pH 16∶9 32∶45 27 50 15.625 1440 288 1728 313 50 25 576i4x 4∶3 2:15-20:15 54 50 15.625 2880 288 3456 312.5 50 26 576i4xH 16∶9 16:45-160:45 54 50 15.625 2880 288 3456 312.5 50 27 288p4x 4∶3 1:15-10:15 54 50 15.625 2880 288 3456 313 50 28 288p4xH 16∶9 8:45-80:45 54 50 15.625 2880 288 3456 313 50 29 576p2x 4∶3 8:15, 16∶15 54 50 31.25 1440 576 1728 625 50 30 576p2xH 16∶9 32:45, 64∶45 54 50 31.25 1440 576 1728 625 50 31 1080p50 16∶9 1∶1 148.5 50 56.25 1920 1080 2640 1125 50 32 1080p24 16∶9 1∶1 74.25 23.98/24 27 1920 1080 2750 1125 Low 33 1080p25 16∶9 1∶1 74.25 25 28.125 1920 1080 2640 1125 Low 34 1080p30 16∶9 1∶1 74.25 29.97/30 33.75 1920 1080 2200 1125 Low 35 480p4x 4∶3 2:9, 4:9, 8∶9 108 59.94 31.469 2880 240 3432 262.5 60 36 480p4xH 16∶9 8:27, 16:27, 32∶27 108 59.94 31.469 2880 240 3432 262.5 60 37 576p4x 4∶3 4:15, 8:15, 16∶15 108 50 31.25 2880 576 3456 625 50 38 576p4xH 16∶9 16:45, 32:45, 64∶45 108 50 31.25 2880 576 3456 625 50 39 1080i25 16∶9 1∶1 72 50 31.25 1920 540 2304 625 50 40 1080i50 16∶9 1∶1 148.5 100 56.25 1920 540 2640 562.5 100 41 720p100 16∶9 1∶1 148.5 100 45.0 1280 720 1980 750 100 42 576p100 4∶3 16∶15 54 100 62.5 720 576 864 625 100 43 576p100H 16∶9 64∶45 54 100 62.5 720 576 864 625 100 44 576i50 4∶3 16∶15 54 100 31.25 1440 576 1728 625 100 45 576i50H 16∶9 64∶45 54 100 31.25 1440 576 1728 625 100 46 1080i60 16∶9 1∶1 148.5 119.88/120 67.5 1920 540 2200 562.5 120 47 720p120 16∶9 1∶1 148.5 119.88/120 90.0 1280 720 1650 750 120 48 480p119 4∶3 8∶9 54 119.88/120 62.937 720 480 858 525 120 49 480p119H 16∶9 32∶27 54 119.88/120 62.937 720 480 858 525 120 50 480i59 4∶3 16∶15 54 119.88/120 31.469 1440 480 1716 525 120 51 480i59H 16∶9 64∶45 54 119.88/120 31.469 1440 480 1716 525 120 52 576p200 4∶3 16∶15 108 200 125.0 720 576 864 625 200 53 576p200H 16∶9 64∶45 108 200 125.0 720 576 864 625 200 54 576i100 4∶3 16∶15 108 200 62.5 1440 288 1728 312.5 200 55 576i100H 16∶9 64∶45 108 200 62.5 1440 288 1728 312.5 200 56 480p239 4∶3 8∶9 108 239.76 125.874 720 480 858 525 240 57 480p239H 16∶9 32∶27 108 239.76 125.874 720 480 858 525 240 58 480i119 4∶3 8∶9 108 239.76 62.937 1440 240 1716 262.5 240 59 480i119H 16∶9 32∶27 108 239.76 62.937 1440 240 1716 262.5 240 60 720p24 16∶9 1∶1 59.4 23.98/24 18.0 1280 720 3300 750 Low 61 720p25 16∶9 1∶1 74.25 25 18.75 1280 720 3960 750 Low 62 720p30 16∶9 1∶1 74.25 29.97/30 22.5 1280 720 3300 750 Low 63 1080p120 16∶9 1∶1 297 119.88/120 135.0 1920 1080 2200 1125 120 64 1080p100 16∶9 1∶1 297 100 112.5 1920 1080 2640 1125 100 65 720p24 64∶27 4∶3 59.4 23.98/24 18.0 1280 720 3300 750 Low 66 720p25 64∶27 4∶3 74.25 25 18.75 1280 720 3960 750 Low 67 720p30 64∶27 4∶3 74.25 29.97/30 22.5 1280 720 3300 750 Low 68 720p50 64∶27 4∶3 74.25 50 37.5 1280 720 1980 750 50 69 720p 64∶27 4∶3 74.25 60 45.0 1280 720 1650 750 60 70 720p100 64∶27 4∶3 148.5 100 75.0 1280 720 1980 750 100 71 720p120 64∶27 4∶3 148.5 119.88/120 90.0 1280 720 1650 750 120 72 1080p24 64∶27 4∶3 74.25 23.98/24 27 1920 1080 2750 1125 Low 73 1080p25 64∶27 4∶3 74.25 25 28.125 1920 1080 2640 1125 Low 74 1080p30 64∶27 4∶3 74.25 29.97/30 33.75 1920 1080 2200 1125 Low 75 1080p50 64∶27 4∶3 148.5 50 56.25 1920 1080 2640 1125 50 76 1080p 64∶27 4∶3 148.5 60 67.5 1920 1080 2200 1125 60 77 1080p100 64∶27 4∶3 297.0 100 112.5 1920 1080 2640 1125 100 78 1080p120 64∶27 4∶3 297.0 119.88/120 135.0 1920 1080 2200 1125 120 79 720p2x24 64∶27 64∶63 59.4 23.98/24 18.0 1680 720 3300 750 Low 80 720p2x25 64∶27 64∶63 59.4 25 18.75 1680 720 3168 750 Low 81 720p2x30 64∶27 64∶63 59.4 29.97/30 22.5 1680 720 2640 750 Low 82 720p2x50 64∶27 64∶63 82.5 50 37.5 1680 720 2200 750 50 83 720p2x 64∶27 64∶63 99 60 45.0 1680 720 2200 750 60 84 720p2x100 64∶27 64∶63 165 100 82.5 1680 720 2000 825 100 85 720p2x120 64∶27 64∶63 198 119.88/120 99.0 1680 720 2000 825 120 86 1080p2x24 64∶27 1∶1 99 23.98/24 26.4 2560 1080 3750 1100 Low 87 1080p2x25 64∶27 1∶1 90 25 28.125 2560 1080 3200 1125 Low 88 1080p2x30 64∶27 1∶1 118.8 29.97/30 33.75 2560 1080 3520 1125 Low 89 1080p2x50 64∶27 1∶1 185.625 50 56.25 2560 1080 3000 1125 50 90 1080p2x 64∶27 1∶1 198 60 66.0 2560 1080 3000 1100 60 91 1080p2x100 64∶27 1∶1 371.25 100 125.0 2560 1080 2970 1250 100 92 1080p2x120 64∶27 1∶1 495 119.88/120 150.0 2560 1080 3300 1250 120 93 2160p24 16∶9 1∶1 297 23.98/24 54 3840 2160 5500 2250 Low 94 2160p25 16∶9 1∶1 297 25 56.25 3840 2160 5280 2250 Low 95 2160p30 16∶9 1∶1 297 29.97/30 67.5 3840 2160 4400 2250 Low 96 2160p50 16∶9 1∶1 594 50 112.5 3840 2160 5280 2250 50 97 2160p60 16∶9 1∶1 594 60 135.0 3840 2160 4400 2250 60 98 2160p24 256∶135 1∶1 297 23.98/24 67.5 4096 2160 5500 2250 Low 99 2160p25 256∶135 1∶1 297 25 112.5 4096 2160 5280 2250 Low 100 2160p30 256∶135 1∶1 297 29.97/30 135.0 4096 2160 4400 2250 Low 101 2160p50 256∶135 1∶1 594 50 112.5 4096 2160 5280 2250 50 102 2160p 256∶135 1∶1 594 60 135.0 4096 2160 4400 2250 60 103 2160p24 64∶27 4∶3 297 23.98/24 67.5 3840 2160 5500 2250 Low 104 2160p25 64∶27 4∶3 297 25 112.5 3840 2160 5280 2250 Low 105 2160p30 64∶27 4∶3 297 29.97/30 135.0 3840 2160 4400 2250 Low 106 2160p50 64∶27 4∶3 594 50 112.5 3840 2160 5280 2250 50 107 2160p 64∶27 4∶3 594 60 135.0 3840 2160 4400 2250 60 108 720p48 16∶9 1∶1 90 47.96/48 36.0 1280 720 2500 750 Low 109 720p48 64∶27 4∶3 90 47.96/48 36.0 1280 720 2500 750 Low 110 720p2x48 64∶27 64∶63 99 47.96/48 36.0 1680 720 2750 825 Low 111 1080p48 16∶9 1∶1 148.5 47.96/48 54 1920 1080 2750 1125 Low 112 1080p48 64∶27 4∶3 148.5 47.96/48 54 1920 1080 2750 1125 Low 113 1080p2x48 64∶27 1∶1 198 47.96/48 52.8 2560 1080 3750 1100 Low 114 2160p48 16∶9 1∶1 594 47.96/48 108 3840 2160 5500 2250 Low 115 2160p48 256∶135 1∶1 594 47.96/48 108 4096 2160 5500 2250 Low 116 2160p48 64∶27 4∶3 594 47.96/48 108 3840 2160 5500 2250 Low 117 2160p100 16∶9 1∶1 1188 100 225.0 3840 2160 5280 2250 100 118 2160p120 16∶9 1∶1 1188 119.88/120 270.0 3840 2160 4400 2250 120 119 2160p100 64∶27 4∶3 1188 100 225.0 3840 2160 5280 2250 100 120 2160p120 64∶27 4∶3 1188 119.88/120 270.0 3840 2160 4400 2250 120 121 2160p2x24 64∶27 1∶1 396 23.98/24 52.8 5120 2160 7500 2200 Low 122 2160p2x25 64∶27 1∶1 396 25 55.0 5120 2160 7200 2200 Low 123 2160p2x30 64∶27 1∶1 396 29.97/30 66.0 5120 2160 6000 2200 Low 124 2160p2x48 64∶27 1∶1 742.5 47.96/48 118.8 5120 2160 6250 2450 Low 125 2160p2x50 64∶27 1∶1 742.5 50 112.5 5120 2160 6600 2250 50 126 2160p2x 64∶27 1∶1 742.5 60 135.0 5120 2160 5500 2250 60 127 2160p2x100 64∶27 1∶1 1485 100 225.0 5120 2160 6600 2250 100 129—192 reserved, value range is used in SVD to indicate native timing for numbers 1—64. 193 2160p2x120 64∶27 1∶1 1485.0 119.88/120 270 5120 2160 5500 2250 120 194 4320p24 16∶9 1∶1 1188.0 23.98/24 108 7680 4320 11000 4500 Low 195 4320p25 16∶9 1∶1 1188.0 25 110 7680 4320 10800 4400 Low 196 4320p30 16∶9 1∶1 1188.0 29.97/30 132 7680 4320 9000 4400 Low 197 4320p48 16∶9 1∶1 2376.0 47.96/48 216 7680 4320 11000 4500 Low 198 4320p50 16∶9 1∶1 2376.0 50 220 7680 4320 10800 4400 50 199 4320p 16∶9 1∶1 2376.0 60 264 7680 4320 9000 4400 60 200 4320p100 16∶9 1∶1 4752.0 100 450 7680 4320 10560 4500 100 201 4320p120 16∶9 1∶1 4752.0 119.88/120 540 7680 4320 8800 4500 120 202 4320p24 64∶27 4∶3 1188.0 23.98/24 108 7680 4320 11000 4500 Low 203 4320p25 64∶27 4∶3 1188.0 25 110 7680 4320 10800 4400 Low 204 4320p30 64∶27 4∶3 1188.0 29.97/30 132 7680 4320 9000 4400 Low 205 4320p48 64∶27 4∶3 2376.0 47.96/48 216 7680 4320 11000 4500 Low 206 4320p50 64∶27 4∶3 2376.0 50 220 7680 4320 10800 4400 50 207 4320p 64∶27 4∶3 2376.0 60 264 7680 4320 9000 4400 60 208 4320p100 64∶27 4∶3 4752.0 100 450 7680 4320 10560 4500 100 209 4320p120 64∶27 4∶3 4752.0 119.88/120 540 7680 4320 8800 4500 120 210 4320p2x24 64∶27 1∶1 1485.0 23.98/24 118.8 10240 4320 12500 4950 Low 211 4320p2x25 64∶27 1∶1 1485.0 25 110 10240 4320 13500 4400 Low 212 4320p2x30 64∶27 1∶1 1485.0 29.97/30 135 10240 4320 11000 4500 Low 213 4320p2x48 64∶27 1∶1 2970.0 47.96/48 237.6 10240 4320 12500 4950 Low 214 4320p2x50 64∶27 1∶1 2970.0 50 220 10240 4320 13500 4400 50 215 4320p2x 64∶27 1∶1 2970.0 60 270 10240 4320 11000 4400 60 216 4320p2x100 64∶27 1∶1 5940.0 100 450 10240 4320 13200 4500 100 217 4320p2x120 64∶27 1∶1 5940.0 119.88/120 540 10240 4320 11000 4500 120 218 2160p100 256∶135 1∶1 1188.0 100 225 4096 2160 5280 2250 100 219 2160p120 256∶135 1∶1 1188.0 119.88/120 270 4096 2160 4400 2250 120Notes: Parentheses indicate instances where pixels are repeated to meet the minimum speed requirements of the interface. For example, in the 720x240p case, the pixels on each line are double-clocked. In the (2880)x480i case, the number of pixels on each line, and thus the number of times that they are repeated, is variable, and is sent to the DTV monitor by the source device.
Increased Hactive expressions include “2x” and “4x” indicate two and four times the reference resolution, respectively.
Video modes with vertical refresh frequency being a multiple of 6 Hz (i.e. 24, 30, 60, 120, and 240 Hz) are considered to be the same timing as equivalent NTSC modes where vertical refresh is adjusted by a factor of 1000/1001. As VESA DMT specifies 0.5% pixel clock tolerance, which 5 times more than the required change, pixel clocks can be adjusted to maintain NTSC compatibility; typically, 240p, 480p, and 480i modes are adjusted, while 576p, 576i and HDTV formats are not.
The Audio Data Blocks contain one or more 3-byte Short Audio Descriptors (SADs). Each SAD details audio format, channel number, and bitrate/resolution capabilities of the display as follows:
Short Audio Descriptor Byte Description 0 Data block header 1 Format and number of channels: Bit 7 Reserved,0
Bit 6–3 Audio format code
0000
0: reserved0001
1: Linear pulse-code modulation (LPCM)0010
2: AC-30011
3: MPEG-1 (Layers 1 and 2)0100
4: MP30101
5: MPEG-20110
6: AAC LC0111
7: DTS1000
8: ATRAC1001
9: DSD (One-Bit) Audio, Super Audio CD1010
10: DD+1011
11: DTS-HD1100
12: MAT/MLP/Dolby TrueHD1101
13: DST Audio1110
14: Microsoft WMA Pro1111
15: Extension, see Byte 3000
1 channel001
2 channels010
3 channels011
4 channels100
5 channels101
6 channels110
7 channels111
8 channels0
Bit 6 192 Bit 5 176 Bit 4 96 Bit 3 88 Bit 2 48 Bit 1 44.1 Bit 0 32 3 Bitrate / format dependent: For codec 1, LPCM: Bits 7–3 Reserved Bit 2 24-bit depth Bit 1 20-bit depth Bit 0 16-bit depth For audio format codecs 2–8, the maximum supported bitrate in bit/s, divided by 8000. For audio format codecs 9–14, format dependent value. For audio format codec 15 (Extension): Bit 7–3 Audio format extended code
00000
0: reserved00001
1: Not used00010
2: Not used00011
3: Not used00100
4: MPEG-4 HE AAC00101
5: MPEG-4 HE AAC v200110
6: MPEG-4 AAC LC00111
7: DRA01000
8: MPEG-4 HE AAC + MPEG Surround01001
9: reserved01010
10: MPEG-4 HE AAC LC + MPEG Surround01011
11: MPEG-H 3D Audio01100
12: AC-401101
13: Linear pulse-code modulation (LPCM 3D Audio)01110
14: Auro-Cx01111
15: MPEG-D USACA Vendor Specific Data Block (if any) contains as its first three bytes the vendor's IEEE 24-bit registration number,[24] least significant byte first. The remainder of the Vendor Specific Data Block is the "data payload", which can be anything the vendor considers worthy of inclusion in this EDID extension block. For example, IEEE registration number 00 0C 03
means this is a "HDMI Licensing, LLC" specific data block (contains HDMI 1.4 info), C4 5D D8
means this is a "HDMI Forum" specific data block (contains HDMI 2.0 info), 00 D0 46
means this is "DOLBY LABORATORIES, INC." (contains Dolby Vision info) and 90 84 8b
is "HDR10+ Technologies, LLC" (contains HDR10+ info as part of HDMI 2.1 Amendment A1 standard[25]). It starts with a two byte source physical address, least significant byte first. The source physical address provides the CEC physical address for upstream CEC devices. HDMI 1.3a specifies some requirements for the data payload.
1
, supported; 0
, unsupported: Bit 7 A function that needs info from ACP or ISRC packets Bit 6 16-bit-per-channel deep color (48-bit) Bit 5 12-bit-per-channel deep color (36-bit) Bit 4 10-bit-per-channel deep color (30-bit) Bit 3 4∶4∶4 in deep color modes Bit 2 Reserved, 0
Bit 1 Reserved, 0
Bit 0 DVI Dual Link Operation 7 (optional) Maximum TMDS frequency. 0
, unspecified; else, Max_TMDS_Frequency / 5 MHz 8 (optional) Latency fields indicators 1
, present; 0
, absent: Bit 7 Latency fields Bit 6 Interlaced latency fields. Absent if latency fields are absent. Bits 5–0 Reserved, 0
9 Video latency optional; if indicated, value = 1 + ms/2 with a max. of 251 meaning 500 ms 10 Audio latency
00
. Speaker Allocation Data Block[edit]
If a Speaker Allocation Data Block is present, it will consist of three bytes. The first and second bytes contain information about which speakers (or speaker pairs) are present in the display device:
Speaker Allocation Data Block Byte Description 0 Data block header 11
, present; 0
, absent: Bit 7 Front left/right wide (FLw/FRw) Bit 6 Deprecated, was Rear left/right center (RLC/RRC) Bit 5 Front left/right center (FLc/FRc) Bit 4 Back center (BC) Bit 3 Back left/right (BL/BR) Bit 2 Front center (FC) Bit 1 Low-frequency effects (LFE) Bit 0 Front left/right (FL/FR) 2 Bit 7 Deprecated, was Top side left/right (TpSiL/TpSiR) Bit 6 Deprecated, was Side left/right (SiL/SiR) Bit 5 Deprecated, was Top back center (TpBC) Bit 4 Deprecated, was Low-frequency effects 2 (LFE2) Bit 3 Left surround/right surround (LS/RS) Bit 2 Top front center (TpFC) Bit 1 Top center (TpC) Bit 0 Top front left/right (TpFL/TpFR) 3 Bits 7-3 Reserved, 0
Bit 2 Deprecated, was Bottom front left/right (BtFL/BtFR) Bit 1 Deprecated, was Bottom front center (BtFC) Bit 0 Deprecated, was Top back left/right (TpBL/TpBR)
Some speaker flags have been deprecated in the SADB, but are still available in the RCDB's SPM. These speakers could not be indicated with a CA value in the Audio InfoFrame, and can only be used with Delivery According to the Speaker Mask, which corresponds to the RCDB only.
Room Configuration Data Block[edit]The Room Configuration Data Block and Speaker Location Data Blocks describe the speaker setup using room coordinates.
Room Configuration Data Block Byte Description 0 Data block header Bits 7-5111
=7, block type tag Bits 4-0 Length of payload data that follows this block, in bytes 1 13
= extended tag code 3 Configuration Bit 7 Display data is valid Bit 6 Speaker count is valid Bit 5 Speaker location descriptors (SLD) are present Bits 4-0 Speaker count (1-32) 4 Speaker presence mask 1 (SPM1): 1
, present; 0
, absent Bit 7 Front left/right wide (FLw/FRw) Bit 6 Deprecated, was Rear left/right center (RLC/RRC) Bit 5 Front left/right center (FLc/FRc) Bit 4 Back center (BC) Bit 3 Back left/right (BL/BR) Bit 2 Front center (FC) Bit 1 Low-frequency effects 1 (LFE1) Bit 0 Front left/right (FL/FR) 5 Speaker presence mask 2 (SPM2): 1
, present; 0
, absent Bit 7 Top side left/right (TpSiL/TpSiR) Bit 6 Side left/right (SiL/SiR) Bit 5 Top back center (TpBC) Bit 4 Low-frequency effects 2 (LFE2) Bit 3 Left/right surround (LS/RS) Bit 2 Top front center (TpFC) Bit 1 Top center (TpC) Bit 0 Top front left/right (TpFL/TpFR) 6 Speaker presence mask 3 (SPM3): 1
, present; 0
, absent Bits 7-4 Reserved, 0
Bit 3 Deprecated, was Top left/right surround (TpLS/TpRS) Bit 2 Bottom front left/right (BtFL/BtFR) Bit 1 Bottom front center (BtFC) Bit 0 Top back left/right (TpBL/TpBR) 7-9 Maximum distance from the primary listening position to the farthest speakers along X, Y, Z axes, if speaker location descriptors (SLD) blocks are present; otherwise 00
= undefined 10-13 Distance from the primary listening position to the center of display along X, Y, Z axes; 00
= undefined when display data flag is not set
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4