Call signature
(1) (since C++23) (2) (since C++23)Helper concepts
template< class F, class T, class I >
concept /*indirectly-binary-left-foldable*/ = /* see description */;
Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(x1, x2), x3), ...), xn)
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_left_first
behaves like std::accumulate's overload that accepts a binary predicate, except that the *first is used internally as an initial element.
The behavior is undefined if [
first,
last)
is not a valid range.
Equivalent to:
Helper concepts
(3A) (exposition only*) template< class F, class T, class I >concept /*indirectly-binary-left-foldable*/ =
std::copy_constructible<F> &&
std::indirectly_readable<I> &&
std::invocable<F&, T, std::iter_reference_t<I>> &&
std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>,
std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> &&
/*indirectly-binary-left-foldable-impl*/<F, T, I,
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
An object of type std::optional<U> that contains the result of left-fold of the given range over f, where U is equivalent to decltype(ranges::fold_left(std::move(first), last, std::iter_value_t<I>(*first), f)).
If the range is empty, std::optional<U>() is returned.
[edit] Possible implementationsstruct fold_left_first_fn { template<std::input_iterator I, std::sentinel_for<I> S, /*indirectly-binary-left-foldable*/<std::iter_value_t<I>, I> F> requires std::constructible_from<std::iter_value_t<I>, std::iter_reference_t<I>> constexpr auto operator()(I first, S last, F f) const { using U = decltype( ranges::fold_left(std::move(first), last, std::iter_value_t<I>(*first), f) ); if (first == last) return std::optional<U>(); std::optional<U> init(std::in_place, *first); for (++first; first != last; ++first) *init = std::invoke(f, std::move(*init), *first); return std::move(init); } template<ranges::input_range R, /*indirectly-binary-left-foldable*/< ranges::range_value_t<R>, ranges::iterator_t<R>> F> requires std::constructible_from<ranges::range_value_t<R>, ranges::range_reference_t<R>> constexpr auto operator()(R&& r, F f) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(f)); } }; inline constexpr fold_left_first_fn fold_left_first;[edit] Complexity
Exactly ranges::distance(first, last) - 1 (assuming the range is not empty) applications of the function object f.
[edit] NotesThe following table compares all constrained folding algorithms:
[edit] Example#include <algorithm> #include <array> #include <functional> #include <ranges> #include <utility> int main() { constexpr std::array v{1, 2, 3, 4, 5, 6, 7, 8}; static_assert ( *std::ranges::fold_left_first(v.begin(), v.end(), std::plus{}) == 36 && *std::ranges::fold_left_first(v, std::multiplies{}) == 40320 ); constexpr std::array w { 1, 2, 3, 4, 13, 1, 2, 3, 4, 13, 1, 2, 3, 4, 13, 1, 2, 3, 4, }; static_assert ( "Find the only value that (by precondition) occurs odd number of times:" && *std::ranges::fold_left_first(w, [](int p, int q){ return p ^ q; }) == 13 ); constexpr auto pairs = std::to_array<std::pair<char, float>> ({ {'A', 3.0f}, {'B', 3.5f}, {'C', 4.0f} }); static_assert ( "Get the product of all pair::second in pairs:" && *std::ranges::fold_left_first ( pairs | std::ranges::views::values, std::multiplies{} ) == 42 ); }[edit] References
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4