Call signature
(1) template< std::input_iterator I, std::sentinel_for<I> S, class T, /* indirectly-binary-left-foldable */<T, I> F >
constexpr /* see description */
/* indirectly-binary-left-foldable */
<T, ranges::iterator_t<R>> F >
constexpr /* see description */
Helper concepts
template< class F, class T, class I >
concept /* indirectly-binary-left-foldable */ = /* see description */;
Helper class template
(4) (since C++23)Left-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(f(f(f(init, x1), x2), ...), xn)
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_left_with_iter
behaves like std::accumulate's overload that accepts a binary predicate.
The behavior is undefined if [
first,
last)
is not a valid range.
1) The range is [
first,
last)
.
Equivalent to:
Helper concepts
(3A) (exposition only*) template< class F, class T, class I >concept /*indirectly-binary-left-foldable*/ =
std::copy_constructible<F> &&
std::indirectly_readable<I> &&
std::invocable<F&, T, std::iter_reference_t<I>> &&
std::convertible_to<std::invoke_result_t<F&, T, std::iter_reference_t<I>>,
std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>> &&
/*indirectly-binary-left-foldable-impl*/<F, T, I,
The return type alias. See "
Return value" section for details.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
Let U be std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>.
1)An object of type
ranges::fold_left_with_iter_result<I, U>.
If the range is empty, the return value is obtained via the expression equivalent to
return {std::move(first), U(std::move(init))};.
[edit] Possible implementationsclass fold_left_with_iter_fn { template<class O, class I, class S, class T, class F> constexpr auto impl(I&& first, S&& last, T&& init, F f) const { using U = std::decay_t<std::invoke_result_t<F&, T, std::iter_reference_t<I>>>; using Ret = ranges::fold_left_with_iter_result<O, U>; if (first == last) return Ret{std::move(first), U(std::move(init))}; U accum = std::invoke(f, std::move(init), *first); for (++first; first != last; ++first) accum = std::invoke(f, std::move(accum), *first); return Ret{std::move(first), std::move(accum)}; } public: template<std::input_iterator I, std::sentinel_for<I> S, class T = std::iter_value_t<I>, /* indirectly-binary-left-foldable */<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { return impl<I>(std::move(first), std::move(last), std::move(init), std::ref(f)); } template<ranges::input_range R, class T = ranges::range_value_t<R>, /* indirectly-binary-left-foldable */<T, ranges::iterator_t<R>> F> constexpr auto operator()(R&& r, T init, F f) const { return impl<ranges::borrowed_iterator_t<R>> ( ranges::begin(r), ranges::end(r), std::move(init), std::ref(f) ); } }; inline constexpr fold_left_with_iter_fn fold_left_with_iter;[edit] Complexity
Exactly ranges::distance(first, last) applications of the function object f.
[edit] NotesThe following table compares all constrained folding algorithms:
[edit] Example#include <algorithm> #include <cassert> #include <complex> #include <functional> #include <ranges> #include <utility> #include <vector> int main() { namespace ranges = std::ranges; std::vector v{1, 2, 3, 4, 5, 6, 7, 8}; auto sum = ranges::fold_left_with_iter(v.begin(), v.end(), 6, std::plus<int>()); assert(sum.value == 42); assert(sum.in == v.end()); auto mul = ranges::fold_left_with_iter(v, 0X69, std::multiplies<int>()); assert(mul.value == 4233600); assert(mul.in == v.end()); // Get the product of the std::pair::second of all pairs in the vector: std::vector<std::pair<char, float>> data {{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; auto sec = ranges::fold_left_with_iter ( data | ranges::views::values, 2.0f, std::multiplies<>() ); assert(sec.value == 42); // Use a program defined function object (lambda-expression): auto lambda = [](int x, int y){ return x + 0B110 + y; }; auto val = ranges::fold_left_with_iter(v, -42, lambda); assert(val.value == 42); assert(val.in == v.end()); using CD = std::complex<double>; std::vector<CD> nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto res = ranges::fold_left_with_iter(nums, {7, 0}, std::multiplies{}); #else auto res = ranges::fold_left_with_iter(nums, CD{7, 0}, std::multiplies{}); #endif assert((res.value == CD{42, 42})); }[edit] References
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4