A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://docs.scipy.org/doc/numpy-1.9.1/reference/generated/numpy.vsplit.html below:

numpy.vsplit — NumPy v1.10 Manual

Split an array into multiple sub-arrays vertically (row-wise).

Please refer to the split documentation. vsplit is equivalent to split with axis=0 (default), the array is always split along the first axis regardless of the array dimension.

>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[  0.,   1.,   2.,   3.],
       [  4.,   5.,   6.,   7.],
       [  8.,   9.,  10.,  11.],
       [ 12.,  13.,  14.,  15.]])
>>> np.vsplit(x, 2)
[array([[ 0.,  1.,  2.,  3.],
       [ 4.,  5.,  6.,  7.]]),
 array([[  8.,   9.,  10.,  11.],
       [ 12.,  13.,  14.,  15.]])]
>>> np.vsplit(x, np.array([3, 6]))
[array([[  0.,   1.,   2.,   3.],
       [  4.,   5.,   6.,   7.],
       [  8.,   9.,  10.,  11.]]),
 array([[ 12.,  13.,  14.,  15.]]),
 array([], dtype=float64)]

With a higher dimensional array the split is still along the first axis.

>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[ 0.,  1.],
        [ 2.,  3.]],
       [[ 4.,  5.],
        [ 6.,  7.]]])
>>> np.vsplit(x, 2)
[array([[[ 0.,  1.],
        [ 2.,  3.]]]),
 array([[[ 4.,  5.],
        [ 6.,  7.]]])]

RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4