Return an array representing the indices of a grid.
Compute an array where the subarrays contain index values 0, 1, … varying only along the corresponding axis.
The shape of the grid.
Data type of the result.
Return a sparse representation of the grid instead of a dense representation. Default is False.
Returns one array of grid indices, grid.shape = (len(dimensions),) + tuple(dimensions)
.
Returns a tuple of arrays, with grid[i].shape = (1, ..., 1, dimensions[i], 1, ..., 1)
with dimensions[i] in the ith place
Notes
The output shape in the dense case is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if dimensions is a tuple (r0, ..., rN-1)
of length N
, the output shape is (N, r0, ..., rN-1)
.
The subarrays grid[k]
contains the N-D array of indices along the k-th
axis. Explicitly:
grid[k, i0, i1, ..., iN-1] = ik
Examples
>>> import numpy as np >>> grid = np.indices((2, 3)) >>> grid.shape (2, 2, 3) >>> grid[0] # row indices array([[0, 0, 0], [1, 1, 1]]) >>> grid[1] # column indices array([[0, 1, 2], [0, 1, 2]])
The indices can be used as an index into an array.
>>> x = np.arange(20).reshape(5, 4) >>> row, col = np.indices((2, 3)) >>> x[row, col] array([[0, 1, 2], [4, 5, 6]])
Note that it would be more straightforward in the above example to extract the required elements directly with x[:2, :3]
.
If sparse is set to true, the grid will be returned in a sparse representation.
>>> i, j = np.indices((2, 3), sparse=True) >>> i.shape (2, 1) >>> j.shape (1, 3) >>> i # row indices array([[0], [1]]) >>> j # column indices array([[0, 1, 2]])
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4