Tshepang Mbambo
This tutorial is intended to be a gentle introduction to argparse
, the recommended command-line parsing module in the Python standard library.
Note
The standard library includes two other libraries directly related to command-line parameter processing: the lower level optparse
module (which may require more code to configure for a given application, but also allows an application to request behaviors that argparse
doesnât support), and the very low level getopt
(which specifically serves as an equivalent to the getopt()
family of functions available to C programmers). While neither of those modules is covered directly in this guide, many of the core concepts in argparse
first originated in optparse
, so some aspects of this tutorial will also be relevant to optparse
users.
Letâs show the sort of functionality that we are going to explore in this introductory tutorial by making use of the ls command:
$ ls cpython devguide prog.py pypy rm-unused-function.patch $ ls pypy ctypes_configure demo dotviewer include lib_pypy lib-python ... $ ls -l total 20 drwxr-xr-x 19 wena wena 4096 Feb 18 18:51 cpython drwxr-xr-x 4 wena wena 4096 Feb 8 12:04 devguide -rwxr-xr-x 1 wena wena 535 Feb 19 00:05 prog.py drwxr-xr-x 14 wena wena 4096 Feb 7 00:59 pypy -rw-r--r-- 1 wena wena 741 Feb 18 01:01 rm-unused-function.patch $ ls --help Usage: ls [OPTION]... [FILE]... List information about the FILEs (the current directory by default). Sort entries alphabetically if none of -cftuvSUX nor --sort is specified. ...
A few concepts we can learn from the four commands:
The ls command is useful when run without any options at all. It defaults to displaying the contents of the current directory.
If we want beyond what it provides by default, we tell it a bit more. In this case, we want it to display a different directory, pypy
. What we did is specify what is known as a positional argument. Itâs named so because the program should know what to do with the value, solely based on where it appears on the command line. This concept is more relevant to a command like cp, whose most basic usage is cp SRC DEST
. The first position is what you want copied, and the second position is where you want it copied to.
Now, say we want to change behaviour of the program. In our example, we display more info for each file instead of just showing the file names. The -l
in that case is known as an optional argument.
Thatâs a snippet of the help text. Itâs very useful in that you can come across a program you have never used before, and can figure out how it works simply by reading its help text.
Let us start with a very simple example which does (almost) nothing:
import argparse parser = argparse.ArgumentParser() parser.parse_args()
Following is a result of running the code:
$ python prog.py $ python prog.py --help usage: prog.py [-h] options: -h, --help show this help message and exit $ python prog.py --verbose usage: prog.py [-h] prog.py: error: unrecognized arguments: --verbose $ python prog.py foo usage: prog.py [-h] prog.py: error: unrecognized arguments: foo
Here is what is happening:
Running the script without any options results in nothing displayed to stdout. Not so useful.
The second one starts to display the usefulness of the argparse
module. We have done almost nothing, but already we get a nice help message.
The --help
option, which can also be shortened to -h
, is the only option we get for free (i.e. no need to specify it). Specifying anything else results in an error. But even then, we do get a useful usage message, also for free.
An example:
import argparse parser = argparse.ArgumentParser() parser.add_argument("echo") args = parser.parse_args() print(args.echo)
And running the code:
$ python prog.py usage: prog.py [-h] echo prog.py: error: the following arguments are required: echo $ python prog.py --help usage: prog.py [-h] echo positional arguments: echo options: -h, --help show this help message and exit $ python prog.py foo foo
Here is whatâs happening:
Weâve added the add_argument()
method, which is what we use to specify which command-line options the program is willing to accept. In this case, Iâve named it echo
so that itâs in line with its function.
Calling our program now requires us to specify an option.
The parse_args()
method actually returns some data from the options specified, in this case, echo
.
The variable is some form of âmagicâ that argparse
performs for free (i.e. no need to specify which variable that value is stored in). You will also notice that its name matches the string argument given to the method, echo
.
Note however that, although the help display looks nice and all, it currently is not as helpful as it can be. For example we see that we got echo
as a positional argument, but we donât know what it does, other than by guessing or by reading the source code. So, letâs make it a bit more useful:
import argparse parser = argparse.ArgumentParser() parser.add_argument("echo", help="echo the string you use here") args = parser.parse_args() print(args.echo)
And we get:
$ python prog.py -h usage: prog.py [-h] echo positional arguments: echo echo the string you use here options: -h, --help show this help message and exit
Now, how about doing something even more useful:
import argparse parser = argparse.ArgumentParser() parser.add_argument("square", help="display a square of a given number") args = parser.parse_args() print(args.square**2)
Following is a result of running the code:
$ python prog.py 4 Traceback (most recent call last): File "prog.py", line 5, in <module> print(args.square**2) TypeError: unsupported operand type(s) for ** or pow(): 'str' and 'int'
That didnât go so well. Thatâs because argparse
treats the options we give it as strings, unless we tell it otherwise. So, letâs tell argparse
to treat that input as an integer:
import argparse parser = argparse.ArgumentParser() parser.add_argument("square", help="display a square of a given number", type=int) args = parser.parse_args() print(args.square**2)
Following is a result of running the code:
$ python prog.py 4 16 $ python prog.py four usage: prog.py [-h] square prog.py: error: argument square: invalid int value: 'four'
That went well. The program now even helpfully quits on bad illegal input before proceeding.
Introducing Optional arguments¶So far we have been playing with positional arguments. Let us have a look on how to add optional ones:
import argparse parser = argparse.ArgumentParser() parser.add_argument("--verbosity", help="increase output verbosity") args = parser.parse_args() if args.verbosity: print("verbosity turned on")
And the output:
$ python prog.py --verbosity 1 verbosity turned on $ python prog.py $ python prog.py --help usage: prog.py [-h] [--verbosity VERBOSITY] options: -h, --help show this help message and exit --verbosity VERBOSITY increase output verbosity $ python prog.py --verbosity usage: prog.py [-h] [--verbosity VERBOSITY] prog.py: error: argument --verbosity: expected one argument
Here is what is happening:
The program is written so as to display something when --verbosity
is specified and display nothing when not.
To show that the option is actually optional, there is no error when running the program without it. Note that by default, if an optional argument isnât used, the relevant variable, in this case args.verbosity
, is given None
as a value, which is the reason it fails the truth test of the if
statement.
The help message is a bit different.
When using the --verbosity
option, one must also specify some value, any value.
The above example accepts arbitrary integer values for --verbosity
, but for our simple program, only two values are actually useful, True
or False
. Letâs modify the code accordingly:
import argparse parser = argparse.ArgumentParser() parser.add_argument("--verbose", help="increase output verbosity", action="store_true") args = parser.parse_args() if args.verbose: print("verbosity turned on")
And the output:
$ python prog.py --verbose verbosity turned on $ python prog.py --verbose 1 usage: prog.py [-h] [--verbose] prog.py: error: unrecognized arguments: 1 $ python prog.py --help usage: prog.py [-h] [--verbose] options: -h, --help show this help message and exit --verbose increase output verbosity
Here is what is happening:
The option is now more of a flag than something that requires a value. We even changed the name of the option to match that idea. Note that we now specify a new keyword, action
, and give it the value "store_true"
. This means that, if the option is specified, assign the value True
to args.verbose
. Not specifying it implies False
.
It complains when you specify a value, in true spirit of what flags actually are.
Notice the different help text.
If you are familiar with command line usage, you will notice that I havenât yet touched on the topic of short versions of the options. Itâs quite simple:
import argparse parser = argparse.ArgumentParser() parser.add_argument("-v", "--verbose", help="increase output verbosity", action="store_true") args = parser.parse_args() if args.verbose: print("verbosity turned on")
And here goes:
$ python prog.py -v verbosity turned on $ python prog.py --help usage: prog.py [-h] [-v] options: -h, --help show this help message and exit -v, --verbose increase output verbosity
Note that the new ability is also reflected in the help text.
Combining Positional and Optional arguments¶Our program keeps growing in complexity:
import argparse parser = argparse.ArgumentParser() parser.add_argument("square", type=int, help="display a square of a given number") parser.add_argument("-v", "--verbose", action="store_true", help="increase output verbosity") args = parser.parse_args() answer = args.square**2 if args.verbose: print(f"the square of {args.square} equals {answer}") else: print(answer)
And now the output:
$ python prog.py usage: prog.py [-h] [-v] square prog.py: error: the following arguments are required: square $ python prog.py 4 16 $ python prog.py 4 --verbose the square of 4 equals 16 $ python prog.py --verbose 4 the square of 4 equals 16
Weâve brought back a positional argument, hence the complaint.
Note that the order does not matter.
How about we give this program of ours back the ability to have multiple verbosity values, and actually get to use them:
import argparse parser = argparse.ArgumentParser() parser.add_argument("square", type=int, help="display a square of a given number") parser.add_argument("-v", "--verbosity", type=int, help="increase output verbosity") args = parser.parse_args() answer = args.square**2 if args.verbosity == 2: print(f"the square of {args.square} equals {answer}") elif args.verbosity == 1: print(f"{args.square}^2 == {answer}") else: print(answer)
And the output:
$ python prog.py 4 16 $ python prog.py 4 -v usage: prog.py [-h] [-v VERBOSITY] square prog.py: error: argument -v/--verbosity: expected one argument $ python prog.py 4 -v 1 4^2 == 16 $ python prog.py 4 -v 2 the square of 4 equals 16 $ python prog.py 4 -v 3 16
These all look good except the last one, which exposes a bug in our program. Letâs fix it by restricting the values the --verbosity
option can accept:
import argparse parser = argparse.ArgumentParser() parser.add_argument("square", type=int, help="display a square of a given number") parser.add_argument("-v", "--verbosity", type=int, choices=[0, 1, 2], help="increase output verbosity") args = parser.parse_args() answer = args.square**2 if args.verbosity == 2: print(f"the square of {args.square} equals {answer}") elif args.verbosity == 1: print(f"{args.square}^2 == {answer}") else: print(answer)
And the output:
$ python prog.py 4 -v 3 usage: prog.py [-h] [-v {0,1,2}] square prog.py: error: argument -v/--verbosity: invalid choice: 3 (choose from 0, 1, 2) $ python prog.py 4 -h usage: prog.py [-h] [-v {0,1,2}] square positional arguments: square display a square of a given number options: -h, --help show this help message and exit -v, --verbosity {0,1,2} increase output verbosity
Note that the change also reflects both in the error message as well as the help string.
Now, letâs use a different approach of playing with verbosity, which is pretty common. It also matches the way the CPython executable handles its own verbosity argument (check the output of python --help
):
import argparse parser = argparse.ArgumentParser() parser.add_argument("square", type=int, help="display the square of a given number") parser.add_argument("-v", "--verbosity", action="count", help="increase output verbosity") args = parser.parse_args() answer = args.square**2 if args.verbosity == 2: print(f"the square of {args.square} equals {answer}") elif args.verbosity == 1: print(f"{args.square}^2 == {answer}") else: print(answer)
We have introduced another action, âcountâ, to count the number of occurrences of specific options.
$ python prog.py 4 16 $ python prog.py 4 -v 4^2 == 16 $ python prog.py 4 -vv the square of 4 equals 16 $ python prog.py 4 --verbosity --verbosity the square of 4 equals 16 $ python prog.py 4 -v 1 usage: prog.py [-h] [-v] square prog.py: error: unrecognized arguments: 1 $ python prog.py 4 -h usage: prog.py [-h] [-v] square positional arguments: square display a square of a given number options: -h, --help show this help message and exit -v, --verbosity increase output verbosity $ python prog.py 4 -vvv 16
Yes, itâs now more of a flag (similar to action="store_true"
) in the previous version of our script. That should explain the complaint.
It also behaves similar to âstore_trueâ action.
Now hereâs a demonstration of what the âcountâ action gives. Youâve probably seen this sort of usage before.
And if you donât specify the -v
flag, that flag is considered to have None
value.
As should be expected, specifying the long form of the flag, we should get the same output.
Sadly, our help output isnât very informative on the new ability our script has acquired, but that can always be fixed by improving the documentation for our script (e.g. via the help
keyword argument).
That last output exposes a bug in our program.
Letâs fix:
import argparse parser = argparse.ArgumentParser() parser.add_argument("square", type=int, help="display a square of a given number") parser.add_argument("-v", "--verbosity", action="count", help="increase output verbosity") args = parser.parse_args() answer = args.square**2 # bugfix: replace == with >= if args.verbosity >= 2: print(f"the square of {args.square} equals {answer}") elif args.verbosity >= 1: print(f"{args.square}^2 == {answer}") else: print(answer)
And this is what it gives:
$ python prog.py 4 -vvv the square of 4 equals 16 $ python prog.py 4 -vvvv the square of 4 equals 16 $ python prog.py 4 Traceback (most recent call last): File "prog.py", line 11, in <module> if args.verbosity >= 2: TypeError: '>=' not supported between instances of 'NoneType' and 'int'
First output went well, and fixes the bug we had before. That is, we want any value >= 2 to be as verbose as possible.
Third output not so good.
Letâs fix that bug:
import argparse parser = argparse.ArgumentParser() parser.add_argument("square", type=int, help="display a square of a given number") parser.add_argument("-v", "--verbosity", action="count", default=0, help="increase output verbosity") args = parser.parse_args() answer = args.square**2 if args.verbosity >= 2: print(f"the square of {args.square} equals {answer}") elif args.verbosity >= 1: print(f"{args.square}^2 == {answer}") else: print(answer)
Weâve just introduced yet another keyword, default
. Weâve set it to 0
in order to make it comparable to the other int values. Remember that by default, if an optional argument isnât specified, it gets the None
value, and that cannot be compared to an int value (hence the TypeError
exception).
And:
You can go quite far just with what weâve learned so far, and we have only scratched the surface. The argparse
module is very powerful, and weâll explore a bit more of it before we end this tutorial.
What if we wanted to expand our tiny program to perform other powers, not just squares:
import argparse parser = argparse.ArgumentParser() parser.add_argument("x", type=int, help="the base") parser.add_argument("y", type=int, help="the exponent") parser.add_argument("-v", "--verbosity", action="count", default=0) args = parser.parse_args() answer = args.x**args.y if args.verbosity >= 2: print(f"{args.x} to the power {args.y} equals {answer}") elif args.verbosity >= 1: print(f"{args.x}^{args.y} == {answer}") else: print(answer)
Output:
$ python prog.py usage: prog.py [-h] [-v] x y prog.py: error: the following arguments are required: x, y $ python prog.py -h usage: prog.py [-h] [-v] x y positional arguments: x the base y the exponent options: -h, --help show this help message and exit -v, --verbosity $ python prog.py 4 2 -v 4^2 == 16
Notice that so far weâve been using verbosity level to change the text that gets displayed. The following example instead uses verbosity level to display more text instead:
import argparse parser = argparse.ArgumentParser() parser.add_argument("x", type=int, help="the base") parser.add_argument("y", type=int, help="the exponent") parser.add_argument("-v", "--verbosity", action="count", default=0) args = parser.parse_args() answer = args.x**args.y if args.verbosity >= 2: print(f"Running '{__file__}'") if args.verbosity >= 1: print(f"{args.x}^{args.y} == ", end="") print(answer)
Output:
$ python prog.py 4 2 16 $ python prog.py 4 2 -v 4^2 == 16 $ python prog.py 4 2 -vv Running 'prog.py' 4^2 == 16Specifying ambiguous arguments¶
When there is ambiguity in deciding whether an argument is positional or for an argument, --
can be used to tell parse_args()
that everything after that is a positional argument:
>>> parser = argparse.ArgumentParser(prog='PROG') >>> parser.add_argument('-n', nargs='+') >>> parser.add_argument('args', nargs='*') >>> # ambiguous, so parse_args assumes it's an option >>> parser.parse_args(['-f']) usage: PROG [-h] [-n N [N ...]] [args ...] PROG: error: unrecognized arguments: -f >>> parser.parse_args(['--', '-f']) Namespace(args=['-f'], n=None) >>> # ambiguous, so the -n option greedily accepts arguments >>> parser.parse_args(['-n', '1', '2', '3']) Namespace(args=[], n=['1', '2', '3']) >>> parser.parse_args(['-n', '1', '--', '2', '3']) Namespace(args=['2', '3'], n=['1'])Conflicting options¶
So far, we have been working with two methods of an argparse.ArgumentParser
instance. Letâs introduce a third one, add_mutually_exclusive_group()
. It allows for us to specify options that conflict with each other. Letâs also change the rest of the program so that the new functionality makes more sense: weâll introduce the --quiet
option, which will be the opposite of the --verbose
one:
import argparse parser = argparse.ArgumentParser() group = parser.add_mutually_exclusive_group() group.add_argument("-v", "--verbose", action="store_true") group.add_argument("-q", "--quiet", action="store_true") parser.add_argument("x", type=int, help="the base") parser.add_argument("y", type=int, help="the exponent") args = parser.parse_args() answer = args.x**args.y if args.quiet: print(answer) elif args.verbose: print(f"{args.x} to the power {args.y} equals {answer}") else: print(f"{args.x}^{args.y} == {answer}")
Our program is now simpler, and weâve lost some functionality for the sake of demonstration. Anyways, hereâs the output:
$ python prog.py 4 2 4^2 == 16 $ python prog.py 4 2 -q 16 $ python prog.py 4 2 -v 4 to the power 2 equals 16 $ python prog.py 4 2 -vq usage: prog.py [-h] [-v | -q] x y prog.py: error: argument -q/--quiet: not allowed with argument -v/--verbose $ python prog.py 4 2 -v --quiet usage: prog.py [-h] [-v | -q] x y prog.py: error: argument -q/--quiet: not allowed with argument -v/--verbose
That should be easy to follow. Iâve added that last output so you can see the sort of flexibility you get, i.e. mixing long form options with short form ones.
Before we conclude, you probably want to tell your users the main purpose of your program, just in case they donât know:
import argparse parser = argparse.ArgumentParser(description="calculate X to the power of Y") group = parser.add_mutually_exclusive_group() group.add_argument("-v", "--verbose", action="store_true") group.add_argument("-q", "--quiet", action="store_true") parser.add_argument("x", type=int, help="the base") parser.add_argument("y", type=int, help="the exponent") args = parser.parse_args() answer = args.x**args.y if args.quiet: print(answer) elif args.verbose: print(f"{args.x} to the power {args.y} equals {answer}") else: print(f"{args.x}^{args.y} == {answer}")
Note that slight difference in the usage text. Note the [-v | -q]
, which tells us that we can either use -v
or -q
, but not both at the same time:
$ python prog.py --help usage: prog.py [-h] [-v | -q] x y calculate X to the power of Y positional arguments: x the base y the exponent options: -h, --help show this help message and exit -v, --verbose -q, --quietHow to translate the argparse output¶
The output of the argparse
module such as its help text and error messages are all made translatable using the gettext
module. This allows applications to easily localize messages produced by argparse
. See also Internationalizing your programs and modules.
For instance, in this argparse
output:
$ python prog.py --help usage: prog.py [-h] [-v | -q] x y calculate X to the power of Y positional arguments: x the base y the exponent options: -h, --help show this help message and exit -v, --verbose -q, --quiet
The strings usage:
, positional arguments:
, options:
and show this help message and exit
are all translatable.
In order to translate these strings, they must first be extracted into a .po
file. For example, using Babel, run this command:
$ pybabel extract -o messages.po /usr/lib/python3.12/argparse.py
This command will extract all translatable strings from the argparse
module and output them into a file named messages.po
. This command assumes that your Python installation is in /usr/lib
.
You can find out the location of the argparse
module on your system using this script:
import argparse print(argparse.__file__)
Once the messages in the .po
file are translated and the translations are installed using gettext
, argparse
will be able to display the translated messages.
To translate your own strings in the argparse
output, use gettext
.
The argparse
module allows you to specify custom type converters for your command-line arguments. This allows you to modify user input before itâs stored in the argparse.Namespace
. This can be useful when you need to pre-process the input before it is used in your program.
When using a custom type converter, you can use any callable that takes a single string argument (the argument value) and returns the converted value. However, if you need to handle more complex scenarios, you can use a custom action class with the action parameter instead.
For example, letâs say you want to handle arguments with different prefixes and process them accordingly:
import argparse parser = argparse.ArgumentParser(prefix_chars='-+') parser.add_argument('-a', metavar='<value>', action='append', type=lambda x: ('-', x)) parser.add_argument('+a', metavar='<value>', action='append', type=lambda x: ('+', x)) args = parser.parse_args() print(args)
Output:
$ python prog.py -a value1 +a value2 Namespace(a=[('-', 'value1'), ('+', 'value2')])
In this example, we:
Created a parser with custom prefix characters using the prefix_chars
parameter.
Defined two arguments, -a
and +a
, which used the type
parameter to create custom type converters to store the value in a tuple with the prefix.
Without the custom type converters, the arguments would have treated the -a
and +a
as the same argument, which would have been undesirable. By using custom type converters, we were able to differentiate between the two arguments.
The argparse
module offers a lot more than shown here. Its docs are quite detailed and thorough, and full of examples. Having gone through this tutorial, you should easily digest them without feeling overwhelmed.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4