2. Using the Tutorial Examples
3. Getting Started with Web Applications
4. JavaServer Faces Technology
7. Using JavaServer Faces Technology in Web Pages
8. Using Converters, Listeners, and Validators
9. Developing with JavaServer Faces Technology
10. JavaServer Faces Technology: Advanced Concepts
11. Using Ajax with JavaServer Faces Technology
12. Composite Components: Advanced Topics and Example
13. Creating Custom UI Components and Other Custom Objects
Determining Whether You Need a Custom Component or Renderer
When to Use a Custom Component
Component, Renderer, and Tag Combinations
Understanding the Image Map Example
Why Use JavaServer Faces Technology to Implement an Image Map?
Understanding the Rendered HTML
Understanding the Facelets Page
Summary of the Image Map Application Classes
Steps for Creating a Custom Component
Creating Custom Component Classes
Specifying the Component Family
Enabling Component Properties to Accept Expressions
Implementing an Event Listener
Implementing Value-Change Listeners
Handling Events for Custom Components
Defining the Custom Component Tag in a Tag Library Descriptor
Creating and Using a Custom Converter
Creating and Using a Custom Validator
Implementing the Validator Interface
Binding Component Values and Instances to Managed Bean Properties
Binding a Component Value to a Property
Binding a Component Value to an Implicit Object
Binding a Component Instance to a Bean Property
Binding Converters, Listeners, and Validators to Managed Bean Properties
14. Configuring JavaServer Faces Applications
16. Uploading Files with Java Servlet Technology
17. Internationalizing and Localizing Web Applications
18. Introduction to Web Services
19. Building Web Services with JAX-WS
20. Building RESTful Web Services with JAX-RS
21. JAX-RS: Advanced Topics and Example
23. Getting Started with Enterprise Beans
24. Running the Enterprise Bean Examples
25. A Message-Driven Bean Example
26. Using the Embedded Enterprise Bean Container
27. Using Asynchronous Method Invocation in Session Beans
Part V Contexts and Dependency Injection for the Java EE Platform
28. Introduction to Contexts and Dependency Injection for the Java EE Platform
29. Running the Basic Contexts and Dependency Injection Examples
30. Contexts and Dependency Injection for the Java EE Platform: Advanced Topics
31. Running the Advanced Contexts and Dependency Injection Examples
32. Introduction to the Java Persistence API
33. Running the Persistence Examples
34. The Java Persistence Query Language
35. Using the Criteria API to Create Queries
36. Creating and Using String-Based Criteria Queries
37. Controlling Concurrent Access to Entity Data with Locking
38. Using a Second-Level Cache with Java Persistence API Applications
39. Introduction to Security in the Java EE Platform
40. Getting Started Securing Web Applications
41. Getting Started Securing Enterprise Applications
42. Java EE Security: Advanced Topics
Part VIII Java EE Supporting Technologies
43. Introduction to Java EE Supporting Technologies
45. Resources and Resource Adapters
46. The Resource Adapter Example
47. Java Message Service Concepts
48. Java Message Service Examples
49. Bean Validation: Advanced Topics
50. Using Java EE Interceptors
51. Duke's Bookstore Case Study Example
52. Duke's Tutoring Case Study Example
53. Duke's Forest Case Study Example
Both MapComponent and AreaComponent delegate all of their rendering to a separate renderer. The section Performing Encoding explains how MapRenderer performs the encoding for MapComponent. This section explains in detail the process of delegating rendering to a renderer using AreaRenderer, which performs the rendering for AreaComponent.
To delegate rendering, you perform these tasks:
Create the Renderer class.
Register the renderer with a render kit by using the @FacesRenderer annotation (or by using the application configuration resource file, as explained in Registering a Custom Renderer with a Render Kit).
Identify the renderer type in the @FacesRenderer annotation.
When delegating rendering to a renderer, you can delegate all encoding and decoding to the renderer, or you can choose to do part of it in the component class. The AreaComponent class delegates encoding to the AreaRenderer class.
The renderer class begins with a @FacesRenderer annotation:
@FacesRenderer(componentFamily = "Area", rendererType = "dukesbookstore.renderers.AreaRenderer") public class AreaRenderer extends Renderer {
The @FacesRenderer annotation registers the renderer class with the JavaServer Faces implementation as a renderer class. The annotation identifies the component family as well as the renderer type.
To perform the rendering for AreaComponent, AreaRenderer must implement an encodeEnd method. The encodeEnd method of AreaRenderer retrieves the shape, coordinates, and alternative text values stored in the ImageArea bean that is bound to AreaComponent. Suppose that the area tag currently being rendered has a value attribute value of "book203". The following line from encodeEnd gets the value of the attribute "book203" from the FacesContext instance.
ImageArea ia = (ImageArea)area.getValue();
The attribute value is the ImageArea bean instance, which contains the shape, coords, and alt values associated with the book203 AreaComponent instance. Configuring Model Data describes how the application stores these values.
After retrieving the ImageArea object, the method renders the values for shape, coords, and alt by simply calling the associated accessor methods and passing the returned values to the javax.faces.context.ResponseWriter instance, as shown by these lines of code, which write out the shape and coordinates:
writer.startElement("area", area); writer.writeAttribute("alt", iarea.getAlt(), "alt"); writer.writeAttribute("coords", iarea.getCoords(), "coords"); writer.writeAttribute("shape", iarea.getShape(), "shape");
The encodeEnd method also renders the JavaScript for the onmouseout, onmouseover, and onclick attributes. The Facelets page need only provide the path to the images that are to be loaded during an onmouseover or onmouseout action:
<bookstore:area id="map3" value="#{Book203}" onmouseover="resources/images/book_203.jpg" onmouseout="resources/images/book_all.jpg" targetImage="mapImage"/>
The AreaRenderer class takes care of generating the JavaScript for these actions, as shown in the following code from encodeEnd. The JavaScript that AreaRenderer generates for the onclick action sets the value of the hidden field to the value of the current area's component ID and submits the page.
sb = new StringBuffer("document.forms[0]['").append(targetImageId). append("'].src='"); sb.append( getURI(context, (String) area.getAttributes().get("onmouseout"))); sb.append("'"); writer.writeAttribute("onmouseout", sb.toString(), "onmouseout"); sb = new StringBuffer("document.forms[0]['").append(targetImageId). append("'].src='"); sb.append( getURI(context, (String) area.getAttributes().get("onmouseover"))); sb.append("'"); writer.writeAttribute("onmouseover", sb.toString(), "onmouseover"); sb = new StringBuffer("document.forms[0]['"); sb.append(getName(context, area)); sb.append("'].value='"); sb.append(iarea.getAlt()); sb.append("'; document.forms[0].submit()"); writer.writeAttribute("onclick", sb.toString(), "value"); writer.endElement("area");
By submitting the page, this code causes the JavaServer Faces lifecycle to return back to the Restore View phase. This phase saves any state information, including the value of the hidden field, so that a new request component tree is constructed. This value is retrieved by the decode method of the MapComponent class. This decode method is called by the JavaServer Faces implementation during the Apply Request Values phase, which follows the Restore View phase.
In addition to the encodeEnd method, AreaRenderer contains an empty constructor. This is used to create an instance of AreaRenderer so that it can be added to the render kit.
The @FacesRenderer annotation registers the renderer class with the JavaServer Faces implementation as a renderer class. The annotation identifies the component family as well as the renderer type.
Identifying the Renderer TypeDuring the Render Response phase, the JavaServer Faces implementation calls the getRendererType method of the component's tag handler to determine which renderer to invoke, if there is one.
You identify the type associated with the renderer in the rendererType element of the @FacesRenderer annotation for AreaRenderer as well as in the renderer-type element of the tag library descriptor file.
Copyright © 2013, Oracle and/or its affiliates. All rights reserved. Legal Notices
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4