normalize
to textmodel_doc2vec()
and pass it to as.matrix()
.weights
to textmodel_doc2vec()
to adjust the salience of words in the document vectors.include_data
to textmodel_word2vec()
to save the original tokens object.model
argument to textmodel_word2vec()
to update existing models.normalize
argument is moved from textmodel_word2vec()
to as.matrix()
. The original argument is deprecated and set to FALSE
by default.weights()
.tolower
argument and set to TRUE
to lower-case tokens.x
to be quantedaâs tokens_xptr object to enhance efficiency.textmodel_doc2vec
objects.textmodel_doc2vec
objects.probability()
to compute probability of words.word2vec()
, doc2vec()
and lsa()
to textmodel_word2vec()
, textmodel_doc2vec()
and textmodel_lsa()
respectively.normalize
to word2vec
to disable or enable word vector normalization.weights()
to extract back-propagation weights.analogy()
to convert a formula to named character vector.word2vec()
when verbose = TRUE
.word2vec()
with new argument names and object structures.lda()
to train word vectors using Latent Semantic Analysis.similarity()
and analogy()
functions using proxyC.data_corpus_news2014
that contain 20,000 news summaries as package data.RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4