Frequentist and Bayesian linear regression for large data sets. Useful when the data does not fit into memory (for both frequentist and Bayesian regression), to make running time manageable (mainly for Bayesian regression), and to reduce the total running time because of reduced or less severe memory-spillover into the virtual memory. This is an implementation of Merge & Reduce for linear regression as described in Geppert, L.N., Ickstadt, K., Munteanu, A., & Sohler, C. (2020). 'Streaming statistical models via Merge & Reduce'. International Journal of Data Science and Analytics, 1-17, <doi:10.1007/s41060-020-00226-0>.
Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=mrregression to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4