Fast and memory-less computation of the partial distance correlation for vectors and matrices. Permutation-based and asymptotic hypothesis testing for zero partial distance correlation are also performed. References include: Szekely G. J. and Rizzo M. L. (2014). "Partial distance correlation with methods for dissimilarities". The Annals Statistics, 42(6): 2382–2412. <doi:10.1214/14-AOS1255>. Shen C., Panda S. and Vogelstein J. T. (2022). "The Chi-Square Test of Distance Correlation". Journal of Computational and Graphical Statistics, 31(1): 254–262. <doi:10.1080/10618600.2021.1938585>. Szekely G. J. and Rizzo M. L. (2023). "The Energy of Data and Distance Correlation". Chapman and Hall/CRC. <ISBN:9781482242744>. Kontemeniotis N., Vargiakakis R. and Tsagris M. (2025). On independence testing using the (partial) distance correlation. <doi:10.48550/arXiv.2506.15659>.
Version: 1.2 Depends: R (≥ 4.0) Imports: dcov, Rfast, Rfast2, stats Published: 2025-07-02 DOI: 10.32614/CRAN.package.pdcor Author: Michail Tsagris [aut, cre], Nikolaos Kontemeniotis [aut] Maintainer: Michail Tsagris <mtsagris at uoc.gr> License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] NeedsCompilation: no CRAN checks: pdcor results Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=pdcor to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4