A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://cran.rstudio.com/web/packages/rJava/../NicheBarcoding/../rmarkdown/../codacore/index.html below:

CRAN: Package codacore

codacore: Learning Sparse Log-Ratios for Compositional Data

In the context of high-throughput genetic data, CoDaCoRe identifies a set of sparse biomarkers that are predictive of a response variable of interest (Gordon-Rodriguez et al., 2021) <doi:10.1093/bioinformatics/btab645>. More generally, CoDaCoRe can be applied to any regression problem where the independent variable is Compositional (CoDa), to derive a set of scale-invariant log-ratios (ILR or SLR) that are maximally associated to a dependent variable.

Documentation: Downloads: Linking:

Please use the canonical form https://CRAN.R-project.org/package=codacore to link to this page.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4