Provides functionality to fit a zero-inflated estimator for small area estimation. This estimator is a combines a linear mixed effects regression model and a logistic mixed effects regression model via a two-stage modeling approach. The estimator's mean squared error is estimated via a parametric bootstrap method. Chandra and others (2012, <doi:10.1080/03610918.2011.598991>) introduce and describe this estimator and mean squared error estimator. White and others (2024+, <doi:10.48550/arXiv.2402.03263>) describe the applicability of this estimator to estimation of forest attributes and further assess the estimator's properties.
Version: 0.2.0 Depends: R (≥ 4.1.0) Imports: dplyr, lme4, purrr, progressr, furrr, future, rlang, Rcpp LinkingTo: Rcpp, RcppEigen Suggests: testthat (≥ 3.0.0) Published: 2024-06-06 DOI: 10.32614/CRAN.package.saeczi Author: Josh Yamamoto [aut, cre], Dinan Elsyad [aut], Grayson White [aut], Julian Schmitt [aut], Niels Korsgaard [aut], Kelly McConville [aut], Kate Hu [aut] Maintainer: Josh Yamamoto <joshuayamamoto5 at gmail.com> License: MIT + file LICENSE URL: https://harvard-ufds.github.io/saeczi/ NeedsCompilation: yes Materials: README NEWS CRAN checks: saeczi results Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=saeczi to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4