Ridge regression provide biased estimators of the regression parameters with lower variance. The HDBRR ("High Dimensional Bayesian Ridge Regression") function fits Bayesian Ridge regression without MCMC, this one uses the SVD or QR decomposition for the posterior computation.
Version: 1.1.4 Depends: R (≥ 3.0.0) Imports: numDeriv, parallel, bigstatsr, MASS, graphics Published: 2022-10-05 DOI: 10.32614/CRAN.package.HDBRR Author: Sergio Perez-Elizalde Developer [aut], Blanca Monroy-Castillo Developer [aut, cre], Paulino Perez-Rodriguez User [ctb], Jose Crossa User [ctb] Maintainer: Blanca Monroy-Castillo Developer <blancamonroy.96 at gmail.com> License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] NeedsCompilation: no CRAN checks: HDBRR results Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=HDBRR to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4