This project aims to enable the method of Path Analysis to infer causalities from data. For this we propose a hybrid approach, which uses Bayesian network structure learning algorithms from data to create the input file for creation of a PA model. The process is performed in a semi-automatic way by our intermediate algorithm, allowing novice researchers to create and evaluate their own PA models from a data set. The references used for this project are: Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques. MIT press. <doi:10.1017/S0269888910000275>. Nagarajan, R., Scutari, M., & Lèbre, S. (2013). Bayesian networks in r. Springer, 122, 125-127. Scutari, M., & Denis, J. B. <doi:10.1007/978-1-4614-6446-4>. Scutari M (2010). Bayesian networks: with examples in R. Chapman and Hall/CRC. <doi:10.1201/b17065>. Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical Software, 48(2), 1 - 36. <doi:10.18637/jss.v048.i02>.
Version: 0.3.0 Imports: bnlearn, fastDummies, lavaan, Rgraphviz, semPlot, xlsx Published: 2019-08-01 DOI: 10.32614/CRAN.package.bnpa Author: Elias Carvalho, Joao R N Vissoci, Luciano Andrade, Wagner Machado, Emerson P Cabrera, Julio C Nievola Maintainer: Elias Carvalho <ecacarva at gmail.com> License: GPL-3 URL: https://sites.google.com/site/bnparp/. NeedsCompilation: no CRAN checks: bnpa results Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=bnpa to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4