In this paper, we have observsed n curves Ïs1(t),ââ¦,âÏsn(t) in a region, where siâ=â(θi,âηi),âiâ=â1,ââ¦,ân, and θi is the latitude and ηi is the longitude where the curve Ïsi was sampled. The goal of this package is to estimate an unsampled curve Ïs0(t) at s0âââ{s1,ââ¦,âsn}. The Ideia proposed by Giraldo (2011) was simple: the curve Ïs0(t) is a linear combination of all curves Ïs1(t),ââ¦,âÏsn(t), i.e., \(\\widehat{\\chi\_{\\mathbf{s}\_0}}(t) = \\lambda\_1 \\chi\_{\\mathbf{s}\_1}(t) + \\lambda\_2 \\chi\_{\\mathbf{s}\_2}(t) + \\dots + \\lambda\_n \\chi\_{\\mathbf{s}\_1}(t)\) where λ1,ââ¦,âλn is solution of the linear system given by
where μ is an constant from the method of Lagrangeâs multipliers and the function γ(h)â=ââ«Î³(h;ât)*dt* is called the trace-variogram, where, for each t, γ(h;ât) is the semivariogram for the process Ïs1(t),ââ¦,âÏsn(t). More precisely, for each t, a weakly and isotropic spatial process is assumed for Ïs1(t),ââ¦,âÏs**n(t) and the integration of the semivariogram is carried out. Usually, the integration in the equation (1) is approximated using a modified version of the empirical semivariogram. In this pcackage, we have used the Legendre-Gauss quadrature, which is simple and it explicitly used the definition of the semivariogram.
InstallationThis package can be installed using the devtools
package.
devtools::install_github("gilberto-sassi/geoFourierFDA")
Examples
In this package, we have used the temperature dataset present in the package fda
and in the package geofd
. This dataset has temperature measurements from 35 weather stations from Canada. This data can be downloaded at weather.gov.ca. For illustration, we have separated the time series at The Pas station and used all others stations to estimate the curve temperature at The Pas.
# interpolating curve at Halifax using all remaining curves in the functional dataset
data(canada)
# Estimating the temperature at The Pas
geo_fda(canada$m_data, canada$m_coord, canada$ThePas_coord)
Coefficients of smoothing using Fourier series polynomial
# Coefficients of smoothing using Fourier series polynomial
# Coefficients of smoothing at The Pas
data(canada)
coefs <- coef_fourier(canada$ThePas_ts)
Smoothed curve using Fourier series
# Coefficients of smoothing using Fourier series polynomial
# Coefficients of smoothing at The Pas
data(canada)
# coefficients of Fourier series polynomial
coefs <- coef_fourier(canada$ThePas_ts, m)
# points to evaluate curve at interval [-pi, pi]
x <- seq(from = -pi, to = pi, by = 0.01)
# smoothed curve at some points x
y_est <- fourier_b(coefs, x)
References
Giraldo, R, P Delicado, and J Mateu. 2011. âOrdinary Kriging for Function-Valued Spatial Data.â Environmental and Ecological Statistics 18 (3): 411â26.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4