Data smoothing with penalized splines is a popular method and is well established for one- or two-dimensional covariates. The extension to multiple covariates is straightforward but suffers from exponentially increasing memory requirements and computational complexity. This toolbox provides a matrix-free implementation of a conjugate gradient (CG) method for the regularized least squares problem resulting from tensor product B-spline smoothing with multivariate and scattered data. It further provides matrix-free preconditioned versions of the CG-algorithm where the user can choose between a simpler diagonal preconditioner and an advanced geometric multigrid preconditioner. The main advantage is that all algorithms are performed matrix-free and therefore require only a small amount of memory. For further detail see Siebenborn & Wagner (2021).
Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=mgss to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4