Computing Global Sensitivity Indices from given data using Optimal Transport, as defined in Borgonovo et al (2024) <doi:10.1287/mnsc.2023.01796>. You provide an input sample, an output sample, decide the algorithm, and compute the indices.
Version: 1.0.0 Imports: boot, ggplot2, patchwork (≥ 1.2.0), Rcpp, RcppEigen (≥ 0.3.4.0.0), Rdpack (≥ 2.4), stats, transport (≥ 0.15.0) LinkingTo: Rcpp, RcppEigen Suggests: knitr, rmarkdown, testthat (≥ 3.0.0) Published: 2025-06-17 DOI: 10.32614/CRAN.package.gsaot Author: Leonardo Chiani [aut, cre, cph], Emanuele Borgonovo [rev], Elmar Plischke [rev], Massimo Tavoni [rev] Maintainer: Leonardo Chiani <leonardo.chiani at polimi.it> BugReports: https://github.com/pietrocipolla/gsaot/issues License: GPL (≥ 3) URL: https://github.com/pietrocipolla/gsaot, https://pietrocipolla.github.io/gsaot/ NeedsCompilation: yes Materials: README NEWS CRAN checks: gsaot results Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=gsaot to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4