The network analysis plays an important role in numerous application domains including biomedicine. Estimation of the number of communities is a fundamental and critical issue in network analysis. Most existing studies assume that the number of communities is known a priori, or lack of rigorous theoretical guarantee on the estimation consistency. This method proposes a regularized network embedding model to simultaneously estimate the community structure and the number of communities in a unified formulation. The proposed model equips network embedding with a novel composite regularization term, which pushes the embedding vector towards its center and collapses similar community centers with each other. A rigorous theoretical analysis is conducted, establishing asymptotic consistency in terms of community detection and estimation of the number of communities. Reference: Ren, M., Zhang S. and Wang J. (2022). "Consistent Estimation of the Number of Communities via Regularized Network Embedding". Biometrics, <doi:10.1111/biom.13815>.
Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=cencrne to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4