A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://cran.rstudio.com/web/packages/Rcpp/../sparseDFM/../ggplot2/../SimMultiCorrData/index.html below:

CRAN: Package SimMultiCorrData

SimMultiCorrData: Simulation of Correlated Data with Multiple Variable Types

Generate continuous (normal or non-normal), binary, ordinal, and count (Poisson or Negative Binomial) variables with a specified correlation matrix. It can also produce a single continuous variable. This package can be used to simulate data sets that mimic real-world situations (i.e. clinical or genetic data sets, plasmodes). All variables are generated from standard normal variables with an imposed intermediate correlation matrix. Continuous variables are simulated by specifying mean, variance, skewness, standardized kurtosis, and fifth and sixth standardized cumulants using either Fleishman's third-order (<doi:10.1007/BF02293811>) or Headrick's fifth-order (<doi:10.1016/S0167-9473(02)00072-5>) polynomial transformation. Binary and ordinal variables are simulated using a modification of the ordsample() function from 'GenOrd'. Count variables are simulated using the inverse cdf method. There are two simulation pathways which differ primarily according to the calculation of the intermediate correlation matrix. In Correlation Method 1, the intercorrelations involving count variables are determined using a simulation based, logarithmic correlation correction (adapting Yahav and Shmueli's 2012 method, <doi:10.1002/asmb.901>). In Correlation Method 2, the count variables are treated as ordinal (adapting Barbiero and Ferrari's 2015 modification of GenOrd, <doi:10.1002/asmb.2072>). There is an optional error loop that corrects the final correlation matrix to be within a user-specified precision value of the target matrix. The package also includes functions to calculate standardized cumulants for theoretical distributions or from real data sets, check if a target correlation matrix is within the possible correlation bounds (given the distributions of the simulated variables), summarize results (numerically or graphically), to verify valid power method pdfs, and to calculate lower standardized kurtosis bounds.

Version: 0.2.2 Depends: R (≥ 3.3.0) Imports: BB, nleqslv, GenOrd, psych, Matrix, VGAM, triangle, ggplot2, grid, stats, utils Suggests: knitr, rmarkdown, printr, testthat Published: 2018-06-28 DOI: 10.32614/CRAN.package.SimMultiCorrData Author: Allison Cynthia Fialkowski Maintainer: Allison Cynthia Fialkowski <allijazz at uab.edu> License: GPL-2 URL: https://github.com/AFialkowski/SimMultiCorrData NeedsCompilation: no Materials: README NEWS CRAN checks: SimMultiCorrData results Documentation: Downloads: Reverse dependencies: Linking:

Please use the canonical form https://CRAN.R-project.org/package=SimMultiCorrData to link to this page.


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4