Nonparametric Failure Time (NFT) Bayesian Additive Regression Trees (BART): Time-to-event Machine Learning with Heteroskedastic Bayesian Additive Regression Trees (HBART) and Low Information Omnibus (LIO) Dirichlet Process Mixtures (DPM). An NFT BART model is of the form Y = mu + f(x) + sd(x) E where functions f and sd have BART and HBART priors, respectively, while E is a nonparametric error distribution due to a DPM LIO prior hierarchy. See the following for a complete description of the model at <doi:10.1111/biom.13857>.
Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=nftbart to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4