Bayesian survival model using Weibull regression on both scale and shape parameters. Dependence of shape parameter on covariates permits deviation from proportional-hazard assumption, leading to dynamic - i.e. non-constant with time - hazard ratios between subjects. Bayesian Lasso shrinkage in the form of two Laplace priors - one for scale and one for shape coefficients - allows for many covariates to be included. Cross-validation helper functions can be used to tune the shrinkage parameters. Monte Carlo Markov Chain (MCMC) sampling using a Gibbs wrapper around Radford Neal's univariate slice sampler (R package MfUSampler) is used for coefficient estimation.
Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=BSGW to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4