Provides the SELF criteria to learn causal structure.
Details of the algorithm can be found in âSELF: A Structural Equation Embedded Likelihood Framework for Causal Discoveryâ (AAAI2018).
Installation{r, eval = FALSE} install.packages("SELF")
This package contain the data synthetic process and the casual structure learning algorithm. Here are some examples to make a quick start:
```{r example} #x->y->z set.seed(0) x=rnorm(4000) y=x^2+runif(4000,-1,1)0.1 z=y^2+runif(4000,-1,1)0.1 data=data.frame(x,y,z) fhc(data,gamma=10,booster = âgbtreeâ)
#x->y->z linear data set.seed(0) x=rnorm(4000) y=3x+runif(4000,-1,1)0.1 z=3y+runif(4000,-1,1)0.1 data=data.frame(x,y,z) fhc(data,booster = âlmâ)
#RandomGraph linear data set.seed(0) G=randomGraph(dim=10,indegree=1.5) data=synthetic_data_linear(G=G,sample_num=4000) fitG=fhc(data,booster = âlmâ) indicators(fitG,G) ```
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4