This package provides consistent utility functions for array programming with arbitrary dimensions (summary below).
We recommend to load this package in its own namespace to not shadow base R functions using box
or import
.
# example referencing the package namespace
# do not load the package with 'library(...)' here
narray::stack(...)
Stacking and splitting
stack()
is like cbind
/rbind
, but along arbitrary axes, and taking care of (1) names along each dimension and (2) padding partial matching arrays.
A = matrix(1:4, nrow=2, ncol=2, dimnames=list(c('a','b'),c('x','y')))
B = matrix(5:6, nrow=2, ncol=1, dimnames=list(c('b','a'),'z'))
C = stack(A, B, along=2)
C
#> x y z
#> a 1 3 6
#> b 2 4 5
D = stack(m=A, n=C, along=3) # we can also introduce new dimensions
D
#> , , m
#>
#> x y z
#> a 1 3 NA
#> b 2 4 NA
#>
#> , , n
#>
#> x y z
#> a 1 3 6
#> b 2 4 5
split()
splits an array along a given axis; can do each element or defined subsets.
split(C, along=2, subsets=c('s1','s1','s2'))
#> $s1
#> x y
#> a 1 3
#> b 2 4
#>
#> $s2
#> z
#> a 6
#> b 5
Mapping functions on arrays
Like apply
, but not reordering array dimensions and allowing to specify subsets that the function should be applied on. The function must either return a vector of the same length as the input (returns matrix of same dimension) or of length 1 (drops current dimension or returns subsets).
map(C, along=2, function(x) x*2) # return same length vector
#> x y z
#> a 2 6 12
#> b 4 8 10
map(C, along=2, mean, subsets=c('s1', 's1', 's2')) # summarize each subset to scalar
#> s1 s2
#> a 2 6
#> b 3 5
We can also index multiple arrays using the lambda
function. If the result is a scalar we will get back an array, and an index with result column otherwise.
dot = function(x, y) sum(x * y)
lambda(~ dot(A, B), along=c(A=1, B=2))
#> B
#> A z
#> a 23
#> b 34
lambda(~ dot(A, B), along=c(A=1, B=2), simplify=FALSE)
#> A B result
#> 1 a z 23
#> 2 b z 34
Intersecting
Takes a number of arrays, intersects their names along a given dimension, and returns sub-arrays that match in their names; intersect_list
takes a list of arrays and returns a list of subsets.
E = matrix(1:6, nrow=3, dimnames=list(c('a','b','d'), c('x','y')))
F = matrix(7:9, nrow=3, dimnames=list(c('b','a','c'), 'z'))
intersect(E, F, along=1)
E
#> x y
#> a 1 4
#> b 2 5
F
#> z
#> a 8
#> b 7
Converting to and from data.frame
s
construct()
takes a data frame and a formula specifying dependent (values) and independent (axes) of the resulting array.
DF = data.frame(k1=base::rep(letters[1:3],2),
k2=base::rep(letters[24:25],3), v=1:6)[-6,]
construct(v ~ k1 + k2, data=DF)
#> k2
#> k1 x y
#> a 1 4
#> b 5 2
#> c 3 NA
Masks from factors and lists
Takes either a factor or a list of vectors and creates a binary matrix specifying whether each element is present.
G = list(a='e1', b=c('e1','e2'), c='e2')
mask(G)
#> e1 e2
#> a TRUE FALSE
#> b TRUE TRUE
#> c FALSE TRUE
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4