GDAtools
provides functions for Geometric Data Analysis :
ggplot2
)Initially, I developed GDAtools
because the FactoMineR
package, which I was using at the time, did not offer some of the techniques I needed, in particular specific MCA. So I tried to program the main functions of GDAtools
to be compatible with the MCA of FactoMineR
and vice versa. Then I discovered the ade4
package, which offers an incredibly rich range of possibilities. However, it is oriented towards ecology, which does not exactly correspond to the needs of social scientists (of which I am one). Still, I was very much inspired by it for the GDAtools 2.0 version, in particular for the multi-table methods, with instrumental variables, etc. Lately, I have also tried to develop the package a bit beyond the GDA toolkit âà la Le Roux et Rouanetâ, which was the initial goal.
Please visit https://nicolas-robette.frama.io/GDAtools/ for documentation
InstallationExecute the following code within R
:
if (!require(devtools)){
install.packages('devtools')
library(devtools)
}
install_git("https://framagit.org/nicolas-robette/GDAtools")
Citation
To cite GDAtools
in publications, use :
Robette N. (2025), GDAtools
: Geometric Data Analysis in R
, version 2.2, https://nicolas-robette.frama.io/GDAtools/
A selective list of the handbooks that helped me to develop the package, although there are many other very useful ones (first of all Benzécriâs books)
Bry X., 1995, Analyses factorielles simples, Economica.
Bry X., 1996, Analyses factorielles multiples, Economica.
Escofier B. and Pagès J., 2008, Analyses factorielles simples et multiples, Dunod.
Fénelon J.-P., 1981, Quâest-ce que lâAnalyse des Données?, Lefonen. (The image in the package hex sticker is taken from this bookâs cover.)
Lebart L., Morineau A. and Warwick K., 1984, Multivariate Descriptive Statistical Analysis, John Wiley and sons, New-York.
Le Roux B. and Rouanet H., 2004, Geometric Data Analysis: From Correspondence Analysis to Stuctured Data Analysis, Kluwer Academic Publishers, Dordrecht.
Le Roux B. and Rouanet H., 2010, Multiple Correspondence Analysis, SAGE, Series: Quantitative Applications in the Social Sciences, Volume 163, CA:Thousand Oaks.
Saporta G., 2006, Probabilités, analyses des données et statistique, Editions Technip.
More specific references on some techniques present in the package
Abdi H., 2007, âDiscriminant Correspondence Analysisâ, In: Neil Salkind (Ed.), Encyclopedia of Measurement and Statistics, Thousand Oaks (CA): Sage.
Bouchet-Valat M., 2015, âLâanalyse statistique des tables de contingence carrées - Lâhomogamie socioprofessionnelle en France - I, Lâanalyse des correspondancesâ, Bulletin de Méthodologie Sociologique, 125, 65â88.
Bry X., Robette N., Roueff O., 2016, âA dialogue of the deaf in the statistical theater? Adressing structural effects within a geometric data analysis frameworkâ, Quality & Quantity, 50(3), 1009â1020
Cibois P., 2014, Les méthodes dâanalyse dâenquêtes. Nouvelle édition en ligne. Lyon: ENS Ãditions.
De Leeuw J et van der Heijden PGM, 1985, Quasi-Correspondence Analysis, University of Leiden.
Dolédec S. and Chessel D., 1994, âCo-inertia analysis: an alternative method for studying species-environment relationshipsâ, Freshwater Biology, 31, 277â294.
Escofier B., 1990, âAnalyse des correspondances multiples conditionnelleâ, La revue de Modulad, 5, 13-28.
Escofier B. and Pages J., 1994, âMultiple Factor Analysis (AFMULT package)â, Computational Statistics and Data Analysis, 18, 121-140.
Escoufier Y., 1973, âLe traitement des variables vectoriellesâ, Biometrics, 29, 751â760.
Escoufier Y., 1987, âThe duality diagram : a means of better practical applicationsâ. In Development in numerical ecology, Legendre, P. & Legendre, L. (Eds.) NATO advanced Institute, Serie G. Springer Verlag, Berlin, 139â156.
Kroonenberg P.M. and Lombardo R., 1999, âNonsymmetric Correspondence Analysis: A Tool for Analysing Contingency Tables with a Dependence Structureâ, Multivariate Behavioral Research, 34 (3), 367-396.
Lebart L., 2006, âValidation Techniques in Multiple Correspondence Analysisâ. In M. Greenacre et J. Blasius (eds), Multiple Correspondence Analysis and related techniques, Chapman and Hall/CRC, p.179-196.
Lebart L., 2007, âWhich bootstrap for principal axes methods?â. In P. Brito et al. (eds), Selected Contributions in Data Analysis and Classification, Springer, p.581-588.
Saporta G., 1977, âUne méthode et un programme dâanalyse discriminante sur variables qualitativesâ, Premières Journées Internationales, Analyses des données et informatiques, INRIA, Rocquencourt.
Tucker L.R., 1958, âAn inter-battery method of factor analysisâ, Psychometrik, 23-2, 111-136.
Van der Heijden PGM, 1992, âThree Approaches to Study the Departure from Quasi-independenceâ, Statistica Applicata, 4, 465-80.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4