Showing content from http://cran.rstudio.com/web/packages/Rcpp/../SparseICA/../Rcpp/../QRM/../../views/ExtremeValue.html below:
CRAN Task View: Extreme Value Analysis
CRAN Task View: Extreme Value Analysis Maintainer: Christophe Dutang Contact: dutangc at gmail.com Version: 2025-06-17 URL: https://CRAN.R-project.org/view=ExtremeValue Source: https://github.com/cran-task-views/ExtremeValue/ Contributions: Suggestions and improvements for this task view are very welcome and can be made through issues or pull requests on GitHub or via e-mail to the maintainer address. For further details see the Contributing guide. Citation: Christophe Dutang (2025). CRAN Task View: Extreme Value Analysis. Version 2025-06-17. URL https://CRAN.R-project.org/view=ExtremeValue. Installation: The packages from this task view can be installed automatically using the ctv package. For example, ctv::install.views("ExtremeValue", coreOnly = TRUE)
installs all the core packages or ctv::update.views("ExtremeValue")
installs all packages that are not yet installed and up-to-date. See the CRAN Task View Initiative for more details.
Extreme values modelling and estimation are an important challenge in various domains of application, such as environment, hydrology, finance, actuarial science, just to name a few. The restriction to the analysis of extreme values may be justified since the extreme part of a sample can be of a great importance. That is, it may exhibit a larger risk potential such as high concentration of air pollutants, flood, extreme claim sizes, price shocks in the four previous topics respectively. The statistical analysis of extreme may be spread out in many packages depending on the topic of application. In this task view, we present the packages from a methodological side.
Applications of extreme value theory can be found in other task views: for financial and actuarial analysis in the Finance task view, for environmental analysis in the Environmetrics task view. General implementation of probability distributions is studied in the Distributions task view.
The maintainer gratefully acknowledges L. Belzile, E. Gilleland, P. Northrop, T. Opitz, M. Ribatet and A. Stephenson for their review papers, Kevin Jaunatre for his helpful advice and Achim Zeileis for his useful comments. If you think information is not accurate or if we have omitted a package or important information that should be mentioned here, please send an e-mail or submit an issue or pull request in the GitHub repository linked above.
Table of contents
Univariate Extreme Value Theory
Several packages export the probability functions (quantile, density, distribution and random generation) for the Generalized Pareto and the Generalized Extreme Value distributions, often sticking to the classical prefixing rule (with prefixes "q"
, "d"
, "p"
, "r"
) and allowing the use of the formals such as log
and lower tail
, see the view Distributions for details. Several strategies can be used for the numeric evaluation of these functions in the small shape (near exponential) case. Also, some implementations allow the use of parameters in vectorized form and some can provide the derivatives w.r.t. the parameters. Nevertheless, the nieve package provides symbolic differentiation for two EVT probability distribution (GPD and GEV) in order to compute the log-likelihood.
Bayesian approach
- The package extRemes provides bayesian estimation.
- The package MCMC4Extremes proposes some functions to perform posterior estimation for some distribution, with an emphasis to extreme value distributions.
- The package revdbayes provides the Bayesian analysis of univariate extreme value models using direct random sampling from the posterior distribution, that is, without using MCMC methods.
- The package texmex fit GPD models by using maximum (optionally penalised-)likelihood, or Bayesian estimation, and both classes of models may be fitted with covariates in any/all model parameters.
extRemes
fevd
1â4,* all RWMH custom plot, summary MCMC4Extremes
ggev
,gpdp
1â2,* no RWMH fixed plot, summary revdbayes
rpost
1â4 no RU custom plot, summary texmex
evm
1â2,* all IMH gaussian plot, summary, density,correlogram
[^1] model family: generalized extreme value distribution (1), generalized Pareto distribution (2), inhomogeneous Poisson process (3), order statistics/r-largest (4) or custom/other (*).
[^2] sampling: random walk MetropolisâHastings (RWMH), exact sampling ratio-of-uniform (RU), independent MetropolisâHastings (IMH)
Block Maxima approach
- The package climextRemes provides functions for fitting GEV via point process fitting for extremes in climate data, providing return values, return probabilities, and return periods for stationary and nonstationary models.
- The package evd provides functions for a wide range of univariate distributions. Modelling function allow estimation of parameters for standard univariate extreme value methods.
- The package evir performs modelling of univariate GEV distributions by maximum likelihood fitting.
- The package extRemes provides EVDs univariate estimation for block maxima model approache by MLE. It also incorporates a non-stationarity through the parameters of the EVDs and L-moments estimation for the stationary case for the GEV distributions. Finally, it has also Bayes estimation capabilities.
- The package extremeStat includes functions to fit multiple GEV distributions types available in the package lmomco using linear moments to estimate the parameters.
- The package fExtremes provides univariate data processing and modelling. It includes clustering, block maxima identification and exploratory analysis. The estimation of stationary models for the GEV is provided by maximum likelihood and probability weighted moments.
- The package ismev provides a collection of three functions to fit the GEV (diagnostic plot, MLE, likelihood profile) and follows the book of Coles (2001).
- The package lmom has functions to fit probability distributions from GEV distributions to data using the low-order L-moments.
- The package lmomRFA extends package lmom and implements all the major components for regional frequency analysis using L-moments.
- The package QRM provides a function to fit GEV in Quantitative Risk Management perspective.
- The package Renext provides various functions to fit the GEV distribution using an aggregated marked POT process.
Summary of GEV density functions and GEV fitting functions
climextRemes NA location
scale
shape
fit_gev
y
NA mle
NA evd dgev
loc
scale
shape
fgev
x
NA estimate
NA evir dgev
mu
sigma
xi
gev
data
NA par.ests
NA extraDistr dgev
mu
sigma
xi
NA NA NA NA NA extRemes devd
loc
scale
shape
fevd
x
NA results
par
fExtremes dgev
mu
beta
xi
gevFit
x
fit
par.ests
NA ismev NA NA NA NA gev.fit
xdat
NA mle
NA lmomco pdfgev
xi
alpha
kappa
NA NA NA NA NA QRM dGEV
mu
sigma
xi
fit.GEV
maxima
NA par.ests
NA revdbayes dgev
loc
scale
shape
NA NA NA NA NA SpatialExtremes dgev
loc
scale
shape
NA NA NA NA NA texmex dgev
mu
sigma
xi
evm
y
NA coefficients
NA TLMoments dgev
loc
scale
shape
NA NA NA NA NA Extremal index estimation approach
- The package evd implements univariate estimation for extremal index estimation approach.
- The package evir includes extremal index estimation.
- The package extRemes also provides EVDs univariate estimation for the block maxima and poisson point process approache by MLE. It also incorporates a non-stationarity through the parameters.
- The package extremefit provides modelization of exceedances over a threshold in the Pareto type tail. It computes an adaptive choice of the threshold.
- The package ExtremeRisks provides risk measures such as Expectile, Value-at-Risk, for univariate independent observations and temporal dependent observations. The statistical inference is performed through parametric and non-parametric estimators. Inferential procedures such as confidence intervals, confidence regions and hypothesis testing are obtained by exploiting the asymptotic theory.
- The package fExtremes provides univariate data processing and modelling. It includes extremal index estimation.
- The package mev provides extremal index estimators based on interexceedance time (MLE and iteratively reweigthed least square estimators of Suveges (2007)). It provides the information matrix test statistic proposed by Suveges and Davison (2010) and MLE for the extremal index.
- The package ReIns provides functions for extremal index and splicing approaches in a reinsurance perspective.
- The package evgam implements a moment-based estimator of extremal index based on Ferro and Segers (2003).
Mixture distribution or composite distribution approach
- The package evmix provides kernel density estimation and extreme value modelling. It also implements mixture extreme value models and includes help on the choice of the threshold within those models using MLE: either parametric / GPD, semi-parametric / GPD or non-parametric / GPD.
Peak-Over-Threshold by GPD approach
- The package ercv provides a methodology to fit a generalized Pareto distribution, together with an automatic threshold selection algorithm.
- The package eva provides Goodness-of-fit tests for selection of r in the r-largest order statistics and threshold selection.
- The package evd includes univariate estimation for GPD approach by MLE.
- The package evir performs modelling of univariate GPD by maximum likelihood fitting.
- The package extRemes provides EVDs univariate estimation for GPD approach by MLE. A non-stationarity through the parameters of the EVDs and L-moments estimation for the stationnary case for the GPD distributions is also included.
- The package extremeStat includes functions to fit multiple GPD distributions types available in the package lmomco using linear moments to estimate the parameters.
- The package fExtremes includes the estimation of stationary models for the GPD by maximum likelihood and probability weighted moments.
- The package ismev provides a collection of three functions to fit the GPD (diagnostic plot, MLE over a range of thresholds, likelihood profile) and follows the book of Coles (2OO1).
- The package lmom includes functions to fit probability distributions from GPD to data using the low-order L-moments.
- The package lmomRFA extends package lmom and implements all the major components for regional frequency analysis using L-moments.
- The package mev provides functions to simulate data from GPD and multiple method to estimate the parameters (optimization, MLE, Bayesian methods and the method used in the ismev package).
- The package POT provides multiple estimators of the GPD parameters (MLE, L-Moments, method of median, minimum density power divergence). L-moments diagrams and from the properties of a non-homogeneous Poisson process techniques are provided for the selection of the threshold.
- The package QRM provides functions to fit and graphically assess the fit of the GPD.
- The package ReIns provides a function to fit the GPD distribution as well as the extended Pareto distribution.
- The package Renext provides various functions to fit and assess the GPD distribution using an aggregated marked POT process.
- The package SpatialExtremes provides different approaches for fitting/selecting the threshold in generalized Pareto distributions. Most of them are based on minimizing the AMSE-criterion or at least by reducing the bias of the assumed GPD-model.
- The package texmex fit GPD models by using maximum (optionally penalised-)likelihood, or Bayesian estimation, and both classes of models may be fitted with covariates in any/all model parameters.
- The package NHPoisson provides a function to fit non-homogeneous Poisson processes for peak over threshold analysis.
Summary of GPD density functions and GPD fitting functions
ercv NA NA NA NA fitpot
data
threshold
NA coeff
NA eva dgpd
loc
scale
shape
gpdFit
data
threshold
NA par.ests
NA evd dgpd
loc
scale
shape
fpot
x
threshold
NA estimate
NA evir dgpd
mu
beta
xi
gpd
data
threshold
NA par.ests
NA extraDistr dgpd
mu
sigma
xi
NA NA NA NA NA NA extRemes devd
loc
scale
shape
fevd
x
threshold
NA results
par
fExtremes dgpd
mu
beta
xi
gpdFit
x
u
fit
fit
par
ismev NA NA NA NA gpd.fit
xdat
threshold
NA mle
NA lmomco pdfgpa
xi
alpha
kappa
NA NA NA NA NA NA mev NA NA scale
shape
fit.gpd
xdat
threshold
NA estimate
NA POT dgpd
loc
scale
shape
fitgpd
data
threshold
NA fitted.values
NA QRM dGPD
NA beta
xi
fit.GPD
data
threshold
NA par.ests
NA ReIns dgpd
mu
sigma
gamma
GPDfit
data
NA NA NA NA Renext dGPD
loc
scale
shape
fGPD
x
NA NA estimate
NA revdbayes dgp
loc
scale
shape
NA NA NA NA NA NA SpatialExtremes dgpd
loc
scale
shape
gpdmle
x
threshold
NA NA NA tea dgpd
loc
scale
shape
gpdFit
data
threshold
NA par.ests
NA texmex dgpd
u
sigma
xi
evm
y
th
NA coefficients
NA TLMoments dgpd
loc
scale
shape
NA NA NA NA NA NA Record models:
- RecordTest studies the analysis of record-breaking events and provides non-parametric modeling/testing of a non-stationary behaviour in (extreme) records.
- evir provides only a function
records()
for extracting records.
Regression models:
- The package VGAM offers additive modelling for extreme value analysis. The estimation for vector generalised additive models (GAM) is performed using a backfitting algorithm and employs a penalized likelihood for the smoothing splines. It is the only package known to the authors that performs additive modelling for a range of extreme value analysis. It includes both GEV and GP distributions.
- The package ismev provides a collection of functions to fit a point process with explanatory variables (diagnostic plot, MLE) and follows the book of Coles (2001).
- The package texmex fit GPD models by using maximum (optionally penalised-)likelihood, or Bayesian estimation, and both classes of models may be fitted with covariates in any/all model parameters.
- The package evgam provides methods for fitting various extreme value distributions with parameters of generalised additive model (GAM) form.
- The package GJRM allows to fit generalized smooth/additive models (GAM like regressions) for location, scale and shape. It incorporates as margin some distributions linked to extreme value analysis and allows parametrization of location and scale for these distributions: Margin generalized Pareto, generalized Pareto II, generalized Pareto with orthogonal parametrization, discrete generalized Pareto, discrete generalized Pareto II, discrete generalized Pareto.
Threshold selection
- The package threshr deals with the selection of thresholds using a Bayesian leave-one-out cross-validation approach in order to compare the predictive performance resulting from a set of thresholds.
- The package ercv provides a methodology to fit a generalized Pareto distribution, together with an automatic threshold selection algorithm.
- The package POT provides multiple estimators of the GPD parameters (MLE, L-Moments, method of median, minimum density power divergence). L-moments diagrams and from the properties of a non-homogeneous Poisson process techniques are provided for the selection of the threshold.
Bivariate Extreme Value Theory Copula approach
- The package copula provides utilities for exploring and modelling a wide range of commonly used copulas, see also the Distributions task view (copula section).
- The package fCopulae provides utilities to fit bivariate extreme copulas.
Maxima approach
- The package evd provides functions for multivariate distributions. Modelling function allow estimation of parameters for class of bivariate extreme value distributions. Both parametric and non-parametric estimation of bivariate EVD can be performed.
- Nonparametric estimation of the spectral measure using a sample of pseudo-angles is available in the package extremis in the bivariate setting.
Peak-Over-Threshold by GPD approach
- The package evd implements bivariate threshold modelling using censored likelihood methodology.
- The single multivariate implementation in the package evir is a bivariate threshold method.
- The package extremefit provides modelization of exceedances over a threshold in the Pareto type tail depending on a time covariate. It provides an adaptive choice of the threshold depending of the covariate.
- The package POT provides estimators of the GPD parameters in the bivariate case.
Tail dependence coefficient approach
- The package RTDE implements bivariate estimation for the tail dependence coefficient.
Multivariate Extreme Value Theory Bayesian approach
- The package SpatialExtremes provides tools for the statistical modelling of spatial extremes using Bayesian hierarchical models (fitting, checking, selection).
- The package ExtremalDep also provides function to fit a multivariate extreme value using Bayesian inference.
Copula approach
- The package SpatialExtremes provides functions to estimate a copula-based model to spatial extremes as well as model checking and selection.
- The package copula provides utilities for exploring and modelling a wide range of commonly used copulas. Extreme value copulas and non-parametric estimates of extreme value copulas are implemented. See also the Distributions task view (copula section).
- The package SimCop has functionalities for simulation of some bivariate extreme value distributions and the multivariate logistic model, or Gumbel copula.
Multivariate Maxima
- The package lmomco is similar to the lmom but also implements recent advances in L-moments estimation, including L-moments for censored data, trimmed L-moments and L-moment for multivariate analysis for GEV distributions.
- The package SpatialExtremes provides functions to fit max-stable processes to data using pairwise likelihood or spatial GEV models possibly with covariates.
- A set of procedures for modelling parametrically and non-parametrically the dependence structure of multivariate extreme-values is provided in ExtremalDep.
- The BMAmevt package implements a Bayesian nonparametric model that uses a trans-dimensional Metropolis algorithm for fitting a Dirichlet mixture to the spectral measure based on pseudo-angles.
Peak-Over-Threshold by GPD approach
- The package lmomco also implements L-moments multivariate analysis for GPD distributions.
- The package graphicalExtremes develops a statistical methodology for sparse multivariate extreme value models. Methods are provided for exact simulation and statistical inference for multivariate Pareto distributions on graphical structures.
Tail dependence coefficient approach
- The package SpatialExtremes provides functions to estimate non parametrically the extremal coefficient function as well as model checking and selection.
- The package ExtremeRisks provides risk measures such as Expectile, Value-at-Risk, for multivariate independent marginals.
- The package tailDepFun provides functions implementing minimal distance estimation methods for parametric tail dependence models.
Statistical tests
- The copula package includes three tests of max-stability assumption.
Classical graphics
Graphics for univariate extreme value analysis
Dispersion index plot POT diplot
Distribution fitting plot extremeStat distLplot
Hill plot evir hill
Hill plot evmix hillplot
Hill plot extremefit hill
Hill plot QRM hillPlot
Hill plot ReIns Hill
Hill plot ExtremeRisks HTailIndex
L-moment plot POT lmomplot
Mean residual life plot POT mrlplot
Mean residual life plot evd mrlplot
Mean residual life plot evir meplot
Mean residual life plot evmix mrlplot
Mean residual life plot ismev mrl.plot
Mean residual life plot QRM MEplot
Mean residual life plot ReIns MeanExcess
Pickandâs plot evmix pickandsplot
QQ Pareto plot POT qplot
QQ Pareto plot RTDE qqparetoplot
QQ Pareto plot QRM plotFittedGPDvsEmpiricalExcesses
QQ Pareto plot ReIns ParetoQQ
QQ Exponential plot QRM QQplot
QQ Exponential plot ReIns ExpQQ
QQ Exponential plot Renext expplot
QQ Lognormal plot ReIns LognormalQQ
QQ Weibull plot ReIns WeibullQQ
QQ Weibull plot Renext weibplot
Risk measure plot QRM RMplot
Threshold choice plot evd tcplot
Threshold choice plot evmix tcplot
Threshold choice plot POT tcplot
Threshold choice plot QRM xiplot
Return level plot POT retlev
Return level plot POT Return
Return level plot Renext plot,lines
Graphics for multivariate extreme value analysis
Angular densities plot ExtremalDep
AngDensPlot
Bivariate threshold choice plot evd
bvtcplot
Dependence measure (chi) plot POT
chimeas
Dependence measure (chi) plot evd
chiplot
Dependence diagnostic plot within time series POT
tsdep.plot
Extremal index plot POT
exiplot
Extremal index plot evd
exiplot
(2D)map for a max-stable process SpatialExtremes
map
madogram for a max-stable process SpatialExtremes
madogram
madogram for a max-stable process ExtremalDep
madogram
F-madogram for a max-stable process SpatialExtremes
fmadogram
lambda-madogram for a max-stable process SpatialExtremes
lmadogram
Multidimensional Hill plot ExtremeRisks
MultiHTailIndex
Pickandsâ dependence function plot POT
pickdep
Pickandsâ dependence function plot ExtremalDep
bbeed
QQ-plot for the extremal coefficient SpatialExtremes
qqextcoeff
Spectral density plot POT
specdens
Bibliography Review papers
- L. Belzile, C. Dutang, P. Northrop, T. Opitz (2023), A modelerâs guide to extreme value software, Extremes, doi:10.1007/s10687-023-00475-9.
- E. Gilleland, M. Ribatet, A. Stephenson (2013). A Software Review for Extreme Value Analysis, Extremes, 16, 103-119, doi:10.1007/s10687-012-0155-0.
- A.G. Stephenson, E. Gilleland (2006). Software for the analysis of extreme events: The current state and future directions. Extremes, 8, 87â109, doi:10.1007/s10687-006-7962-0.
Classical books
- R.-D. Reiss, M. Thomas (2007). Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields, Springer-Verlag, doi:10.1007/978-3-7643-7399-3.
- L. de Haan, A. Ferreira (2006). Extreme Value Theory: An Introduction, Springer-Verlag, doi:10.1007/0-387-34471-3.
- J. Beirlant, Y. Goegebeur, J. Teugels, J. Segers (2004). Statistics of Extremes: Theory and Applications , John Wiley & Sons, doi:10.1002/0470012382.
- B. Finkenstaedt, H. Rootzen (2004). Extreme Values in Finance, Telecommunications, and the Environment , Chapman & Hall/CRC, doi:10.1201/9780203483350.
- S. Coles (2001). An Introduction to Statistical Modeling of Extreme Values, Springer-Verlag, doi:10.1007/978-1-4471-3675-0.
- P. Embrechts, C. Klueppelberg, T. Mikosch (1997). Modelling Extremal Events for Insurance and Finance, Springer-Verlag, doi:10.1007/978-3-642-33483-2.
- S.I. Resnick (1987). Extreme Values, Regular Variation and Point Processes, Springer-Verlag.
Scientific papers
- Suveges and Davison (2010), Model misspecification in peaks over threshold analysis. Annals of Applied Statistics, 4(1), 203-221.
- M. Suveges (2007). Likelihood estimation of the extremal index. Extremes, 10(1), 41-55, doi:10.1007/s10687-007-0034-2.
- R.L. Smith (1987). Approximations in extreme value theory. Technical report 205, Center for Stochastic Process, University of North Carolina, 1â34.
CRAN packages Core: evd, evir, extRemes, SpatialExtremes. Regular: BMAmevt, climextRemes, copula, ercv, eva, evgam, evmix, ExtremalDep, extremefit, ExtremeRisks, extremeStat, extremis, fCopulae, fExtremes, GJRM, graphicalExtremes, ismev, lmom, lmomco, lmomRFA, MCMC4Extremes, mev, NHPoisson, nieve, POT, QRM, RecordTest, ReIns, Renext, revdbayes, RTDE, SimCop, tailDepFun, texmex, threshr, VGAM. Other resources
RetroSearch is an open source project built by @garambo
| Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4