Spatio-temporal causal inference based on point process data. You provide the raw data of locations and timings of treatment and outcome events, specify counterfactual scenarios, and the package estimates causal effects over specified spatial and temporal windows. See Papadogeorgou, et al. (2022) <doi:10.1111/rssb.12548> and Mukaigawara, et al. (2024) <doi:10.31219/osf.io/5kc6f>.
Version: 0.3.4 Depends: R (≥ 3.5.0) Imports: data.table, dplyr, furrr, ggplot2, ggpubr, latex2exp, mclust, progressr, purrr, sf, spatstat.explore, spatstat.geom, spatstat.model, spatstat.univar, terra, tidyr, tidyselect, tidyterra Suggests: elevatr, geosphere, gridExtra, ggthemes, knitr, readr, gridGraphics Published: 2025-01-07 DOI: 10.32614/CRAN.package.geocausal Author: Mitsuru Mukaigawara [cre, aut], Lingxiao Zhou [aut], Georgia Papadogeorgou [aut], Jason Lyall [aut], Kosuke Imai [aut] Maintainer: Mitsuru Mukaigawara <mitsuru_mukaigawara at g.harvard.edu> License: MIT + file LICENSE URL: https://github.com/mmukaigawara/geocausal NeedsCompilation: no Materials: README, NEWS CRAN checks: geocausal resultsRetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4