A RetroSearch Logo

Home - News ( United States | United Kingdom | Italy | Germany ) - Football scores

Search Query:

Showing content from http://cran.rstudio.com/web/packages/Rcpp/../RcppDynProg/../Rcpp/../spinBayes/readme/README.html below:

README

spinBayes

Semi-parametric GxE Interaction via Bayesian Variable Selection

Many complex diseases are known to be affected by the interactions between genetic variants and environmental exposures beyond the main genetic and environmental effects. Existing Bayesian methods for gene-environment (G×E) interaction studies are challenged by the high-dimensional nature of the study and the complexity of environmental influences. We have developed a novel and powerful semi-parametric Bayesian variable selection method that can accommodate linear and nonlinear G×E interactions simultaneously (Ren et al. (2019)). Furthermore, the proposed method can conduct structural identification by distinguishing nonlinear interactions from main effects only case within Bayesian framework. Spike-and-slab priors are incorporated on both individual and group level to shrink coefficients corresponding to irrelevant main and interaction effects to zero exactly. The Markov chain Monte Carlo algorithms of the proposed and alternative methods are efficiently implemented in C++.

Features How to install
install.packages("devtools")
devtools::install_github("jrhub/spinBayes") #v0.2.2
install.packages("spinBayes")
Examples Example.1 (default method)
library(spinBayes)
data(gExp.L)

test = sample((1:nrow(X2)), floor(nrow(X2)/5))
spbayes=BVCfit(X2[-test,], Y2[-test,], Z2[-test,], E2[-test,], clin2[-test,])
spbayes

selected = BVSelection(spbayes)
selected

pred = predict(spbayes, X2[test,], Z2[test,], E2[test,], clin2[test,], Y2[test,])
pred$pmse
# c(pred$y.pred)

## plot the varying effects
plot(spbayes)

Example.2 (non-structural)
data(gExp.L)

test = sample((1:nrow(X2)), floor(nrow(X2)/5))
spbayes=BVCfit(X2[-test,], Y2[-test,], Z2[-test,], E2[-test,], clin2[-test,], structural=FALSE)
spbayes

selected = BVSelection(spbayes)
selected

pred = predict(spbayes, X2[test,], Z2[test,], E2[test,], clin2[test,], Y2[test,])
pred$pmse
# c(pred$y.pred)
Example.3 (non-sparse)
data(gExp.L)

test = sample((1:nrow(X2)), floor(nrow(X2)/5))
spbayes=BVCfit(X2[-test,], Y2[-test,], Z2[-test,], E2[-test,], clin2[-test,], structural=TRUE, sparse=FALSE)
spbayes

selected = BVSelection(spbayes)
selected

pred = predict(spbayes, X2[test,], Z2[test,], E2[test,], clin2[test,], Y2[test,])
pred$pmse
# c(pred$y.pred)
News spinBayes 0.2.0 [2024-2-21] Methods

This package provides implementation for methods proposed in


RetroSearch is an open source project built by @garambo | Open a GitHub Issue

Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo

HTML: 3.2 | Encoding: UTF-8 | Version: 0.7.4