The multinma
package implements network meta-analysis, network meta-regression, and multilevel network meta-regression models which combine evidence from a network of studies and treatments using either aggregate data or individual patient data from each study (Phillippo et al. 2020; Phillippo 2019). Models are estimated in a Bayesian framework using Stan (Carpenter et al. 2017).
You can install the released version of multinma
from CRAN with:
install.packages("multinma")
The development version can be installed from R-universe with:
install.packages("multinma", repos = c("https://dmphillippo.r-universe.dev", getOption("repos")))
or from source on GitHub with:
# install.packages("devtools")
devtools::install_github("dmphillippo/multinma")
Installing from source requires that the rstan
package is installed and configured. See the installation guide here.
A good place to start is with the package vignettes which walk through example analyses, see vignette("vignette_overview")
for an overview. The series of NICE Technical Support Documents on evidence synthesis gives a detailed introduction to network meta-analysis:
Dias, S. et al. (2011). âNICE DSU Technical Support Documents 1-7: Evidence Synthesis for Decision Making.â National Institute for Health and Care Excellence. Available from https://www.sheffield.ac.uk/nice-dsu/tsds.
Multilevel network meta-regression is set out in the following methods papers:
Phillippo, D. M. et al. (2020). âMultilevel Network Meta-Regression for population-adjusted treatment comparisons.â Journal of the Royal Statistical Society: Series A (Statistics in Society), 183(3):1189-1210. doi: 10.1111/rssa.12579.
Citing multinmaPhillippo, D. M. et al. (2024). âMultilevel network meta-regression for general likelihoods: synthesis of individual and aggregate data with applications to survival analysisâ. arXiv:2401.12640.
The multinma
package can be cited as follows:
Phillippo, D. M. (2025). multinma: Bayesian Network Meta-Analysis of Individual and Aggregate Data. R package version 0.8.1, doi: 10.5281/zenodo.3904454.
When fitting ML-NMR models, please cite the methods paper:
Phillippo, D. M. et al. (2020). âMultilevel Network Meta-Regression for population-adjusted treatment comparisons.â Journal of the Royal Statistical Society: Series A (Statistics in Society), 183(3):1189-1210. doi: 10.1111/rssa.12579.
For ML-NMR models with time-to-event outcomes, please cite:
ReferencesPhillippo, D. M. et al. (2024). âMultilevel network meta-regression for general likelihoods: synthesis of individual and aggregate data with applications to survival analysisâ. arXiv:2401.12640.
Carpenter, B., A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell. 2017. âStan: A Probabilistic Programming Language.â
Journal of Statistical Software76 (1).
https://doi.org/10.18637/jss.v076.i01.
Phillippo, D. M. 2019. âCalibration of Treatment Effects in Network Meta-Analysis Using Individual Patient Data.â PhD thesis, University of Bristol.
Phillippo, D. M., S. Dias, A. E. Ades, M. Belger, A. Brnabic, A. Schacht, D. Saure, Z. Kadziola, and N. J. Welton. 2020. âMultilevel Network Meta-Regression for Population-Adjusted Treatment Comparisons.â
Journal of the Royal Statistical Society: Series A (Statistics in Society)183 (3): 1189â1210.
https://doi.org/10.1111/rssa.12579.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4