Replace logical vectors with integer index vectors for lib
and pred
in simplex
and s-mapping
forecasting sources (#632).
Prevent duplicate generic registrations and simplify method definitions (#627).
Unify parameter descriptions to lowercase (#570).
Introduce confidence interval ribbon support in plot method for gccm
results (#550).
Refine randomization strategy in spatial causality test (#643).
Symbolization C++
functions now compute medians from lib subset only (#599).
Users must now use detrend
instead of trend.rm
(#559).
Enable column
parameter in simplex()
and smap()
and rename columns
parameter to column
in multiview()
(#565).
gccm
results where legend labels did not correctly match the corresponding line colors (#552).Enact fnn
R API support for false nearest neighbours method (#512).
Integrate R API and vignette for geographical cross mapping cardinality (#455).
Provide R-level API and vignette for spatial causality test (#403).
Enable custom legend texts and colors in plot method for gccm
results (#535).
Reduce computational load in vignettes (#476).
Document overall structure and usage of spEDM in a dedicated vignette (#415).
Create SSR
vignette for spatial cross-sectional data state-space reconstruction (#412).
Include references for algorithms in spEDM
(#367).
Use non-NA spatial units for lib
/pred
by default (#499).
Refine internal case data (#348).
Patch memory error caused by mismatch between C++ (0-based) and R (1-based) indexing (#480).
Fix error from non-matrix input in grid-type handling due to R matrix slicing (#474).
Enable parallel.level
parameter to specify parallel granularity in gccm
R API (#310).
Implement the multiview
function for multiview embedding forecasting (MVE) method (#221).
Integrate lib
parameter in gccm
R API for library units selection (#278).
Set the default k
to E+2
in the gccm
R API (#261).
Eliminate redundant computations at the source C++ code level (#233).
Add trend.rm
option in the R API for embedded
, simplex
, and smap
methods to align with gccm
behavior (#191).
Refactor indexing of lag values and embedding vector generation for spatial lattice (#186,#184) and grid data (#183,#181).
Default plotting method places the legend in the top-left corner of the plot now (#325).
Refine simplex
& smap
output on the R side (#263).
embedded
, simplex
, smap
when input data contains only one attribute column (#246).sdsfun
package (#159).tau
parameter in the C++ source code and update the R side API (#154).Implement the smap
function to enable the selection of the optimal theta parameter (#128).
Add simplex
function to support selecting the optimal embedding dimension for variables (#98).
Provide an R-level API for generating embeddings (#97).
Now bidirectional mapping in the gccm
result uses a full join
structure when organized on the R side (#118).
Support for calculating unidirectional mappings in the gccm
function (#117).
Relax gccm
C++ source code libsizes
minimum value constraint of E+2
(#109).
Provide a complete GCCM
workflow for spatial lattice and grid data in the gccm
vignette (#100).
Support testing causal links in GCCM with different E
and k
for cause and effect variables (#96).
Add thread settings for gccm
(#94).
Add S-maps
cross-prediction support to gccm
(#81).
Resolve r crash caused by invalid E
#90 and k
#89 parameter settings in gccm
.
Fix incorrect Pearson correlation calculation in C++
code when input contains NA (#83).
Encapsulate the gccm
function using the S4 class (#72).
Add options for tau
, k
, and progressbar
in gccm
(#69).
Add print
and plot
s3 methods for gccm
result (#64).
gccm
function returns empty results when input grid data contains NA values (#61).GCCM
method for spatial lattice and grid data using modern C++.RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4