Implements Additive Logistic Transformation (alr) for Small Area Estimation under Fay Herriot Model. Small Area Estimation is used to borrow strength from auxiliary variables to improve the effectiveness of a domain sample size. This package uses Empirical Best Linear Unbiased Prediction (EBLUP). The Additive Logistic Transformation (alr) are based on transformation by Aitchison J (1986). The covariance matrix for multivariate application is based on covariance matrix used by Esteban M, LombardÃa M, López-VizcaÃno E, Morales D, and Pérez A <doi:10.1007/s11749-019-00688-w>. The non-sampled models are modified area-level models based on models proposed by Anisa R, Kurnia A, and Indahwati I <doi:10.9790/5728-10121519>, with univariate model using model-3, and multivariate model using model-1. The MSE are estimated using Parametric Bootstrap approach. For non-sampled cases, MSE are estimated using modified approach proposed by Haris F and Ubaidillah A <doi:10.4108/eai.2-8-2019.2290339>.
Documentation: Downloads: Linking:Please use the canonical form https://CRAN.R-project.org/package=sae.prop to link to this page.
RetroSearch is an open source project built by @garambo | Open a GitHub Issue
Search and Browse the WWW like it's 1997 | Search results from DuckDuckGo
HTML:
3.2
| Encoding:
UTF-8
| Version:
0.7.4